Reelin is a large molecule of the extracellular matrix (ECM) which regulates neuronal positioning during the early stages of cortical development in vertebrate species. The Reelin molecule can be subdivided into a smaller N-terminal domain, showing homology with F-spondin, and a larger C-terminal region containing 8 EGF-like repeats. The localization of Reelin in the ECM, its large dimensions and the modular organization of its primary structure led us to suppose a structure of its modules similar to domains commonly found in ECM proteins such as Agrin, laminins and thrombospondins. We therefore performed a sequence alignment and molecular modeling analysis to study the three-dimensional fold of the Reelin subrepeat regions. Our analysis produces a tentative model of the core region of the Reelin subrepeat sequences and suggests the presence in this 3D model of structural features common to polysaccharide-binding modules which are often found on proteoglycans of the ECM. These findings provide a conceptual framework for further experiments aimed at testing the functions of the EGF-like repeat regions of Reelin. (c) 2006 Elsevier B.V. All rights reserved.
A 3D model of Reelin subrepeat regions predicts Reelin binding to carbohydrates / Roger, Panteri; Paiardini, Alessandro; Flavio, Keller. - In: BRAIN RESEARCH. - ISSN 0006-8993. - STAMPA. - 1116:1(2006), pp. 222-230. [10.1016/j.brainres.2006.07.128]
A 3D model of Reelin subrepeat regions predicts Reelin binding to carbohydrates
PAIARDINI, ALESSANDRO;
2006
Abstract
Reelin is a large molecule of the extracellular matrix (ECM) which regulates neuronal positioning during the early stages of cortical development in vertebrate species. The Reelin molecule can be subdivided into a smaller N-terminal domain, showing homology with F-spondin, and a larger C-terminal region containing 8 EGF-like repeats. The localization of Reelin in the ECM, its large dimensions and the modular organization of its primary structure led us to suppose a structure of its modules similar to domains commonly found in ECM proteins such as Agrin, laminins and thrombospondins. We therefore performed a sequence alignment and molecular modeling analysis to study the three-dimensional fold of the Reelin subrepeat regions. Our analysis produces a tentative model of the core region of the Reelin subrepeat sequences and suggests the presence in this 3D model of structural features common to polysaccharide-binding modules which are often found on proteoglycans of the ECM. These findings provide a conceptual framework for further experiments aimed at testing the functions of the EGF-like repeat regions of Reelin. (c) 2006 Elsevier B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.