We study the existence of sign-changing solutions for a non-local version of the sinh-Poisson equation on a bounded one-dimensional interval I, under Dirichlet conditions in the exterior of I. This model is strictly related to the mathematical description of galvanic corrosion phenomena for simple electrochemical systems. By means of the finite-dimensional Lyapunov–Schmidt reduction method, we construct bubbling families of solutions developing an arbitrarily prescribed number sign-alternating peaks. With a careful analysis of the limit profile of the solutions, we also show that the number of nodal regions coincides with the number of blow-up points.
Sign-Changing Solutions for the One-Dimensional Non-Local sinh-Poisson Equation / DelaTorre, Azahara; Mancini, Gabriele; Pistoia, Angela. - In: ADVANCED NONLINEAR STUDIES. - ISSN 1536-1365. - (2020). [10.1515/ans-2020-2103]
Titolo: | Sign-Changing Solutions for the One-Dimensional Non-Local sinh-Poisson Equation | |
Autori: | PISTOIA, Angela (Corresponding author) | |
Data di pubblicazione: | 2020 | |
Rivista: | ||
Citazione: | Sign-Changing Solutions for the One-Dimensional Non-Local sinh-Poisson Equation / DelaTorre, Azahara; Mancini, Gabriele; Pistoia, Angela. - In: ADVANCED NONLINEAR STUDIES. - ISSN 1536-1365. - (2020). [10.1515/ans-2020-2103] | |
Handle: | http://hdl.handle.net/11573/1452109 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
DelaTorre_Sign-Changing-Solution_2020.pdf | Versione editoriale (versione pubblicata con il layout dell'editore) | Tutti i diritti riservati (All rights reserved) | Administrator Richiedi una copia |