We study the existence of sign-changing solutions for a non-local version of the sinh-Poisson equation on a bounded one-dimensional interval I, under Dirichlet conditions in the exterior of I. This model is strictly related to the mathematical description of galvanic corrosion phenomena for simple electrochemical systems. By means of the finite-dimensional Lyapunov–Schmidt reduction method, we construct bubbling families of solutions developing an arbitrarily prescribed number sign-alternating peaks. With a careful analysis of the limit profile of the solutions, we also show that the number of nodal regions coincides with the number of blow-up points.

Sign-Changing Solutions for the One-Dimensional Non-Local sinh-Poisson Equation / Delatorre, Azahara; Mancini, Gabriele; Pistoia, Angela. - In: ADVANCED NONLINEAR STUDIES. - ISSN 1536-1365. - (2020). [10.1515/ans-2020-2103]

Sign-Changing Solutions for the One-Dimensional Non-Local sinh-Poisson Equation

DelaTorre, Azahara;Pistoia, Angela
2020

Abstract

We study the existence of sign-changing solutions for a non-local version of the sinh-Poisson equation on a bounded one-dimensional interval I, under Dirichlet conditions in the exterior of I. This model is strictly related to the mathematical description of galvanic corrosion phenomena for simple electrochemical systems. By means of the finite-dimensional Lyapunov–Schmidt reduction method, we construct bubbling families of solutions developing an arbitrarily prescribed number sign-alternating peaks. With a careful analysis of the limit profile of the solutions, we also show that the number of nodal regions coincides with the number of blow-up points.
2020
Fractional laplacian; exponential non-linearities; non-local; corrosion modelling; lyapunov–schmidt reduction; one-dimension; sign-changing
01 Pubblicazione su rivista::01a Articolo in rivista
Sign-Changing Solutions for the One-Dimensional Non-Local sinh-Poisson Equation / Delatorre, Azahara; Mancini, Gabriele; Pistoia, Angela. - In: ADVANCED NONLINEAR STUDIES. - ISSN 1536-1365. - (2020). [10.1515/ans-2020-2103]
File allegati a questo prodotto
File Dimensione Formato  
DelaTorre_Sign-Changing-Solution_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 956.93 kB
Formato Adobe PDF
956.93 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1452109
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact