Nanoscale electron pulses are increasingly in demand, including as probes of nanoscale ultrafast dynamics and for emerging light source and lithography applications. Using electromagnetic simulations, we show that gold plasmonic lenses as multiphoton photoemitters provide unique advantages, including emission from an atomically at surface, nanoscale pulse diameter regardless of laser spot size, and femtosecond-scale response time. We then present fabrication of prototypes with sub-nm roughness via e-beam lithography, as well as electro-optical characterization using cathodoluminescence spectromicroscopy. Finally, we introduce a DC photogun at LBNL built for testing ultrafast photoemitters. We discuss measurement considerations for ultrafast nanoemitters and predict that we can extract tens of pA photocurrent from a single plasmonic lens using a Ti:Sa oscillator. Altogether, this lays the groundwork to develop and test a broad class of plasmon-enhanced ultrafast nanoemitters.
Design and testing of ultrafast plasmonic lens nanoemitters / Durham, D. B.; Rotta Loria, S.; Riminucci, F.; Kanellopulos, K.; Shen, X.; Ciabattini, F.; Mostacci, A.; Musumeci, P.; Minor, A. M.; Cabrini, S.; Filippetto, D.. - 11462:(2020). (Intervento presentato al convegno Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVIII 2020 tenutosi a usa, online) [10.1117/12.2567540].
Design and testing of ultrafast plasmonic lens nanoemitters
Mostacci A.;
2020
Abstract
Nanoscale electron pulses are increasingly in demand, including as probes of nanoscale ultrafast dynamics and for emerging light source and lithography applications. Using electromagnetic simulations, we show that gold plasmonic lenses as multiphoton photoemitters provide unique advantages, including emission from an atomically at surface, nanoscale pulse diameter regardless of laser spot size, and femtosecond-scale response time. We then present fabrication of prototypes with sub-nm roughness via e-beam lithography, as well as electro-optical characterization using cathodoluminescence spectromicroscopy. Finally, we introduce a DC photogun at LBNL built for testing ultrafast photoemitters. We discuss measurement considerations for ultrafast nanoemitters and predict that we can extract tens of pA photocurrent from a single plasmonic lens using a Ti:Sa oscillator. Altogether, this lays the groundwork to develop and test a broad class of plasmon-enhanced ultrafast nanoemitters.File | Dimensione | Formato | |
---|---|---|---|
Durham_Designtestingultrafast_2020.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
4.95 MB
Formato
Adobe PDF
|
4.95 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.