Synchronization of mitochondrial and cytoplasmic translation rates is critical for the maintenance of cellular fitness, with cancer cells being especially vulnerable to translational uncoupling. Although alterations of cytosolic protein synthesis are common in human cancer, compensating mechanisms in mitochondrial translation remain elusive. Here we show that the malignant long non-coding RNA (lncRNA) SAMMSON promotes a balanced increase in ribosomal RNA (rRNA) maturation and protein synthesis in the cytosol and mitochondria by modulating the localization of CARF, an RNA-binding protein that sequesters the exo-ribonuclease XRN2 in the nucleoplasm, which under normal circumstances limits nucleolar rRNA maturation. SAMMSON interferes with XRN2 binding to CARF in the nucleus by favoring the formation of an aberrant cytoplasmic RNA–protein complex containing CARF and p32, a mitochondrial protein required for the processing of the mitochondrial rRNAs. These data highlight how a single oncogenic lncRNA can simultaneously modulate RNA–protein complex formation in two distinct cellular compartments to promote cell growth.
SAMMSON fosters cancer cell fitness by concertedly enhancing mitochondrial and cytosolic translation / Vendramin, R.; Verheyden, Y.; Ishikawa, H.; Goedert, L.; Nicolas, E.; Saraf, K.; Armaos, A.; Delli Ponti, R.; Izumikawa, K.; Mestdagh, P.; Lafontaine, D. L. J.; Tartaglia, G. G.; Takahashi, N.; Marine, J. -C.; Leucci, E.. - In: NATURE STRUCTURAL & MOLECULAR BIOLOGY. - ISSN 1545-9993. - 25:11(2018), pp. 1035-1046. [10.1038/s41594-018-0143-4]
SAMMSON fosters cancer cell fitness by concertedly enhancing mitochondrial and cytosolic translation
Tartaglia G. G.;
2018
Abstract
Synchronization of mitochondrial and cytoplasmic translation rates is critical for the maintenance of cellular fitness, with cancer cells being especially vulnerable to translational uncoupling. Although alterations of cytosolic protein synthesis are common in human cancer, compensating mechanisms in mitochondrial translation remain elusive. Here we show that the malignant long non-coding RNA (lncRNA) SAMMSON promotes a balanced increase in ribosomal RNA (rRNA) maturation and protein synthesis in the cytosol and mitochondria by modulating the localization of CARF, an RNA-binding protein that sequesters the exo-ribonuclease XRN2 in the nucleoplasm, which under normal circumstances limits nucleolar rRNA maturation. SAMMSON interferes with XRN2 binding to CARF in the nucleus by favoring the formation of an aberrant cytoplasmic RNA–protein complex containing CARF and p32, a mitochondrial protein required for the processing of the mitochondrial rRNAs. These data highlight how a single oncogenic lncRNA can simultaneously modulate RNA–protein complex formation in two distinct cellular compartments to promote cell growth.File | Dimensione | Formato | |
---|---|---|---|
Vendramin_Sammson_2018.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.92 MB
Formato
Adobe PDF
|
2.92 MB | Adobe PDF | |
Vendramin_Sammson_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.21 MB
Formato
Adobe PDF
|
3.21 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.