Motivation: RNA structure is difficult to predict in vivo due to interactions with enzymes and other molecules. Here we introduce CROSSalive, an algorithm to predict the single-and double-stranded regions of RNAs in vivo using predictions of protein interactions. Results: Trained on icSHAPE data in presence (m6a+) and absence of N6 methyladenosine modification (m6a-), CROSSalive achieves cross-validation accuracies between 0.70 and 0.88 in identifying high-confidence single-and double-stranded regions. The algorithm was applied to the long non-coding RNA Xist (17 900 nt, not present in the training) and shows an Area under the ROC curve of 0.83 in predicting structured regions.
CROSSalive: A web server for predicting the in vivo structure of RNA molecules / Ponti, R. D.; Armaos, A.; Vandelli, A.; Tartaglia, G. G.. - In: BIOINFORMATICS. - ISSN 1367-4803. - 36:3(2020), pp. 940-941.
Titolo: | CROSSalive: A web server for predicting the in vivo structure of RNA molecules | |
Autori: | ||
Data di pubblicazione: | 2020 | |
Rivista: | ||
Citazione: | CROSSalive: A web server for predicting the in vivo structure of RNA molecules / Ponti, R. D.; Armaos, A.; Vandelli, A.; Tartaglia, G. G.. - In: BIOINFORMATICS. - ISSN 1367-4803. - 36:3(2020), pp. 940-941. | |
Handle: | http://hdl.handle.net/11573/1451117 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Delli ponti_CROSSalive_2020.pdf | Versione editoriale (versione pubblicata con il layout dell'editore) | ![]() | Open Access Visualizza/Apri |