Abstract: A non-isothermal moving-boundary model for food dehydration, accounting for shrinkage and thermal effects, is proposed and applied to the analysis of intermittent dehydration in which air temperature, relative humidity, and velocity vary cyclically in time. The convection-diffusion heat transport equation, accounting for heat transfer, water evaporation, and shrinkage at the sample surface, is coupled to the convection-diffusion water transport equation. Volume shrinkage is not superimposed but predicted by the model through the introduction of a point-wise shrinkage velocity. Experimental dehydration curves, in continuous and intermittent conditions, are accurately predicted by the model with an effective water diffusivity Deff(T) that depends exclusively on the local temperature. The non-isothermal model is successfully applied to the large set of experimental data of continuous and intermittent drying of Rocha pears.

A non-isothermal moving-boundary model for continuous and intermittent drying of pears / Adrover, Alessandra; Venditti, Claudia; Brasiello, Antonio. - In: FOODS. - ISSN 2304-8158. - 9:11(2020). [10.3390/foods9111577]

A non-isothermal moving-boundary model for continuous and intermittent drying of pears

Adrover, Alessandra
;
Venditti, Claudia;Brasiello, Antonio
2020

Abstract

Abstract: A non-isothermal moving-boundary model for food dehydration, accounting for shrinkage and thermal effects, is proposed and applied to the analysis of intermittent dehydration in which air temperature, relative humidity, and velocity vary cyclically in time. The convection-diffusion heat transport equation, accounting for heat transfer, water evaporation, and shrinkage at the sample surface, is coupled to the convection-diffusion water transport equation. Volume shrinkage is not superimposed but predicted by the model through the introduction of a point-wise shrinkage velocity. Experimental dehydration curves, in continuous and intermittent conditions, are accurately predicted by the model with an effective water diffusivity Deff(T) that depends exclusively on the local temperature. The non-isothermal model is successfully applied to the large set of experimental data of continuous and intermittent drying of Rocha pears.
2020
intermittent dehydration; shrinkage; moving-boundary model; non-isothermal drying
01 Pubblicazione su rivista::01a Articolo in rivista
A non-isothermal moving-boundary model for continuous and intermittent drying of pears / Adrover, Alessandra; Venditti, Claudia; Brasiello, Antonio. - In: FOODS. - ISSN 2304-8158. - 9:11(2020). [10.3390/foods9111577]
File allegati a questo prodotto
File Dimensione Formato  
Adrover_A-non-isothermal_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1450238
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact