In the last decades, it has become clear that the canonical amino acid repertoire codified by the universal genetic code is not up to the needs of emerging biotechnologies. For this reason, extensive genetic code re‐engineering is essential to expand the scope of ribosomal protein translation, leading to reprogrammed microbial cells equipped with an alternative biochemical alphabet to be exploited as potential factories for biotechnological purposes. The prerequisite for this to happen is a continuous intracellular supply of noncanonical amino acids through synthetic metabolism from simple and cheap precursors. We have engineered an Escherichia coli bacterial system that fulfills these requirements through reconfiguration of the methionine biosynthetic pathway and the introduction of an exogenous direct trans‐sulfuration pathway. Our metabolic scheme operates in vivo, rescuing intermediates from core cell metabolism and combining them with small bio‐orthogonal compounds. Our reprogrammed E. coli strain is capable of the in‐cell production of L‐azidohomoalanine, which is directly incorporated into proteins in response to methionine codons. We thereby constructed a prototype suitable for economic, versatile, green sustainable chemistry, pushing towards enzyme chemistry and biotechnology‐based production.

An engineered escherichia coli strain with synthetic metabolism for in‐cell production of translationally active methionine derivatives / Schipp, Christian Johannes; Ma, Ying; Al‐shameri, Ammar; D'Alessio, Federico; Neubauer, Peter; Contestabile, Roberto; Budisa, Nediljko; Di Salvo, Martino Luigi. - In: CHEMBIOCHEM. - ISSN 1439-4227. - (2020). [10.1002/cbic.202000257]

An engineered escherichia coli strain with synthetic metabolism for in‐cell production of translationally active methionine derivatives

D'Alessio, Federico;Contestabile, Roberto;Di Salvo, Martino Luigi
2020

Abstract

In the last decades, it has become clear that the canonical amino acid repertoire codified by the universal genetic code is not up to the needs of emerging biotechnologies. For this reason, extensive genetic code re‐engineering is essential to expand the scope of ribosomal protein translation, leading to reprogrammed microbial cells equipped with an alternative biochemical alphabet to be exploited as potential factories for biotechnological purposes. The prerequisite for this to happen is a continuous intracellular supply of noncanonical amino acids through synthetic metabolism from simple and cheap precursors. We have engineered an Escherichia coli bacterial system that fulfills these requirements through reconfiguration of the methionine biosynthetic pathway and the introduction of an exogenous direct trans‐sulfuration pathway. Our metabolic scheme operates in vivo, rescuing intermediates from core cell metabolism and combining them with small bio‐orthogonal compounds. Our reprogrammed E. coli strain is capable of the in‐cell production of L‐azidohomoalanine, which is directly incorporated into proteins in response to methionine codons. We thereby constructed a prototype suitable for economic, versatile, green sustainable chemistry, pushing towards enzyme chemistry and biotechnology‐based production.
2020
click chemistry; genetic code expansion; green chemistry; metabolic engineering; noncanonical amino acids; trans-sulfuration
01 Pubblicazione su rivista::01a Articolo in rivista
An engineered escherichia coli strain with synthetic metabolism for in‐cell production of translationally active methionine derivatives / Schipp, Christian Johannes; Ma, Ying; Al‐shameri, Ammar; D'Alessio, Federico; Neubauer, Peter; Contestabile, Roberto; Budisa, Nediljko; Di Salvo, Martino Luigi. - In: CHEMBIOCHEM. - ISSN 1439-4227. - (2020). [10.1002/cbic.202000257]
File allegati a questo prodotto
File Dimensione Formato  
Schipp_An-engineered_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 4.72 MB
Formato Adobe PDF
4.72 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1450169
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact