Spaceborne Synthetic Aperture Radars (SARs), operating at L-band and above, offer microwave observations of the Earth at very high spatial resolution in almost all-weather conditions. Nevertheless, precipitating clouds can significantly affect the signal backscattered from the ground surface in both amplitude and phase, especially at X band and beyond. This evidence has been assessed by numerous recent efforts analyzing data collected by COSMO-SkyMed (CSK) and TerraSAR-X (TSX) missions at X band. This sensitivity can be exploited to detect and quantify precipitations from SARs at the spatial resolution of a few hundred meters, a very appealing feature considering the current resolution of precipitation products from space. Forward models of SAR response in the presence of precipitation have been developed for analyzing SAR signature sensitivity and developing rainfall retrieval algorithms. Precipitation retrieval algorithms from SARs have also been proposed on a semi-empirical basis. This chapter will review experimental evidences, modelling approaches, retrieval methods and recent applications of X-band SAR data to rainfall estimation.
X-band synthetic aperture radar methods / Mori, S.; Marzano, F. S.; Pierdicca, N.. - (2020), pp. 315-339. - ADVANCES IN GLOBAL CHANGE RESEARCH. [10.1007/978-3-030-24568-9_18].
X-band synthetic aperture radar methods
Mori S.;Marzano F. S.;Pierdicca N.
2020
Abstract
Spaceborne Synthetic Aperture Radars (SARs), operating at L-band and above, offer microwave observations of the Earth at very high spatial resolution in almost all-weather conditions. Nevertheless, precipitating clouds can significantly affect the signal backscattered from the ground surface in both amplitude and phase, especially at X band and beyond. This evidence has been assessed by numerous recent efforts analyzing data collected by COSMO-SkyMed (CSK) and TerraSAR-X (TSX) missions at X band. This sensitivity can be exploited to detect and quantify precipitations from SARs at the spatial resolution of a few hundred meters, a very appealing feature considering the current resolution of precipitation products from space. Forward models of SAR response in the presence of precipitation have been developed for analyzing SAR signature sensitivity and developing rainfall retrieval algorithms. Precipitation retrieval algorithms from SARs have also been proposed on a semi-empirical basis. This chapter will review experimental evidences, modelling approaches, retrieval methods and recent applications of X-band SAR data to rainfall estimation.File | Dimensione | Formato | |
---|---|---|---|
Mori_X-Band_2020.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.