
Chapter 18
X-Band Synthetic Aperture Radar Methods

Saverio Mori, Frank S. Marzano, and Nazzareno Pierdicca

Abstract Spaceborne Synthetic Aperture Radars (SARs), operating at L-band and
above, offer microwave observations of the Earth at very high spatial resolution in
almost all-weather conditions. Nevertheless, precipitating clouds can significantly
affect the signal backscattered from the ground surface in both amplitude and phase,
especially at X band and beyond. This evidence has been assessed by numerous
recent efforts analyzing data collected by COSMO-SkyMed (CSK) and TerraSAR-X
(TSX) missions at X band. This sensitivity can be exploited to detect and quantify
precipitations from SARs at the spatial resolution of a few hundred meters, a very
appealing feature considering the current resolution of precipitation products from
space. Forward models of SAR response in the presence of precipitation have been
developed for analyzing SAR signature sensitivity and developing rainfall retrieval
algorithms. Precipitation retrieval algorithms from SARs have also been proposed
on a semi-empirical basis. This chapter will review experimental evidences, model-
ling approaches, retrieval methods and recent applications of X-band SAR data to
rainfall estimation.

Keywords Synthetic aperture radar · High resolution · Clouds · Rainfall ·
Precipitation · Raindrops · Snowflakes · Reflectivity · Normalized radar cross
section · Particle size distribution · Polarization · Regressive empirical algorithm ·
Probability matching algorithm · COSMO-SkyMed · TerraSAR-X

18.1 Introduction

The importance of monitoring global precipitations and their associated extreme
events, such as floods, landslides, hurricanes, and droughts, is crucial for the
management of daily life and environmental crises (Skofronick-Jackson et al.
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2017). Global-scale precipitation measurements are essential for the development
and validation of both weather and climate models (Ebert et al. 2007). Cloud-
resolving models require global, kilometer-scale observations to provide diagnoses
of their performance and to develop adequate data assimilation procedures (e.g.,
Masunaga et al. 2008).

Since the 1980s much of our understanding of global precipitation has been
provided by spaceborne passive microwave radiometers (e.g., Kummerow et al.
1998; Marzano et al. 2002; Skofronick-Jackson et al. 2017). Precipitation retrievals
from microwave radiometer data over land is affected by a low spatial resolution,
typically larger than tens of kilometers. Spaceborned infrared radiometers can offer
an adequate resolution of few kilometers, but they are nearly saturated by the
presence of precipitating clouds within the observed scene. Space-based weather
radars, operating at Ku band (i.e., about 2-cm wavelength) and beyond, have
represented a key advance in satellite precipitation monitoring. The Ku-band Pre-
cipitation Radar (PR) aboard the Tropical Rainfall Measurement Mission (TRMM)
satellite has provided unprecedented and unique precipitation measurements over
land, even though limited by a swath smaller than microwave radiometers
(Kummerow et al. 1998). The development and launch of the Global Precipitation
Measurement (GPM) mission has further advanced spaceborne radar technology by
means of the Dual-Frequency Precipitation Radar (DPR) at Ku and Ka band (Hou
et al. 2014). However, if significant shallow precipitation or rain cells smaller than
few kilometers occur over land, then both PR and DPR may miss or underestimate
the intensity of such precipitation fields (e.g., Marzano et al. 2011; Durden et al.
1998).

The high spatial resolution of Synthetic Aperture Radars (SARs) at X band (i.e.,
about 3 cm wavelength) and beyond can provide new insights into the structure of
precipitating clouds and permit the observation of small precipitation cells at micro-
alpha scale (between 0.2 and 2 km). Indeed, the nominal spatial resolution of SAR is
of the order of meters, but it is degraded to hundreds of meters by the turbulent
motion of the hydrometeors due the random broadening of the Doppler-frequency
spectra with respect to fixed-target surface imaging (Atlas and Moore 1987).
Spaceborne SARs at C-band and L-band (i.e., about 5 and 21 cm wavelengths,
respectively) have a long heritage for Earth observation, but these space radars are
relatively insensitive to rainfall. Space Shuttle missions in 1994 and 2000 carried the
first X-band SAR (X-SAR) along with L-band and C-band SARs (Jordan et al.
1995). Since then, the possibility of detecting and quantifying precipitation from
SARs has received more attention (e.g., Alpers and Melsheimer 2004; Atlas and
Moore 1987; Ferrazzoli and Schiavon 1987; Melsheimer et al. 1998; Moore et al.
1997). In the last decade, new X-SARs such as four COSMO-SkyMed (CSK)
satellites (ASI 2009) and two TerraSAR-X (TSX) satellites (Fritz and Eineder
2013) followed by other missions such as TecSAR and KOMPSAT-5 have been
succesfully launched. First analyses of X-band SAR influence of precipitating clouds
date back to the ‘80s (Atlas and Moore 1987).

Precipitating clouds can significantly alter the specabeorne backscattered SAR
signal, introducing path attenuation and scattering as well as depolarization and
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tropospheric scintillation (Ferrazzoli and Schiavon 1987; Quegan and Lamont 1986;
Alpers and Melsheimer 2004). An extensive review of the atmospheric impacts on
the retrieved TSX data, can be found in Weinman and Marzano (2008) and
Danklmayer et al. (2009). The latter analyze a large dataset of TSX acquisitions
finding evident precipitations effects in only 0.8% of cases. The analyzed cases
confirm the effect of precipitation on X Band SAR data, but also have provided
evidence that only intense events can produce significant effects at X band. Synergy
and complementarity of X-band SAR with ground-based weather radars have been
investigated in Marzano et al. (2010) and Fritz and Chandrasekar (2010, 2012). A
forward model is generally needed to convert weather radar reflectivity into
spaceborne SAR path attenuation and signal, taking into account polarimetric
features as well (Marzano et al. 2012). Several steps are necessary to simulate a
X-band SAR precipitation signature using weather radar (WR) reflectivity: (1) esti-
mation of the specific differential phase; (2) path attenuation correction
(if necessary); (3) gridding on an Earth-centric Cartesian grid; (4) hydrometeor
classification, in order to use the correct particle distribution model; (5) scale
frequency and look angle; (6) SAR geometry resampling and (7) integration to
SAR observations. Obtainable polarimetric products include the differential reflec-
tivity, and the differential phase, simulated at both X band and Ku band. Baldini
et al. (2014) have carried out a review of the model of Fritz and Chandrasekar (2012)
adding formulas for simulating X-band SAR observables from ground weather radar
reflectivity at C and S band. An analysis of the CSK Ping-Pong mode (alternate
HH-VV) was also carried out, showing some interesting features. Roberto et al.
(2014) extend this model approach to marine environments, a fairly challenging goal
due to the difficulties in modelling the SAR response of the sea surface background.
The detection of the hurricane eye, hurricane tracking, and the estimation of wind
fields from SAR data has also been recently attempted (Li 2017). Hydrological
applications of X-band SARs are typically oriented to flood monitoring (e.g.,
Landuyt et al. 2018; Refice et al. 2018), but precipitation effects can be quantified
as well (Marzano et al. 2011).

This chapter aims to provide an overview of X-band SAR techniques for precip-
itation signature characterization and detection, introducing both precipitation
response simulations (forward models) and precipitation retrieval methods (inverse
models). Sect. 18.2 shows an example of precipitation signatures on SAR imagery,
whereas Sect. 18.3 describes a forward model of SAR response in the presence of
precipitation. Section 18.4 illustrates some precipitation retrieval techniques used in
literature, whereas Sect. 18.5 deals with an advanced approach and the applications
of validation techniques. Finally, Sect. 18.6 contains a discussion on high-frequency
SAR for hydrological applications and future perspectives.
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18.2 Evidence of Precipitation Signatures on X-SAR
Imagery

In Marzano et al. (2010) several examples of precipitation SAR signatures at X band
are discussed. A very good example is represented by Hurricane Gustav, observed
by TerraSAR-X (TSX) on 2 September 2008, from 11:58:44 to 11:59:06 UTC, a few
hours after landfall on the US coast. The selected case study refers to the passage of
Hurricane Gustav over Louisiana and Mississippi northwestward, moving at an
average velocity of 24 km h�1 and delivering torrential rains to the central gulf
coast of the US (e.g., Larto Lake, LA, reported a rainfall total accumulation of
533.4 mm). Ideally speaking, atmospheric effects could be detected, or at least
appreciated, using a clear-sky image acquired by the same instrument in the same
transmitting and receiving polarization and the same acquisition mode, and orbit
direction, during a recent date. Such images are referred to as “SAR background
images”. Unfortunately, in this case no background image was available.

Figure 18.1 shows the synoptic view of an outer rain band of Hurricane Gustav
over south-eastern Louisiana taken from the NEXRAD ground Weather Radar
(WR) located in Mobile (Alabama) (e.g., Fulton et al. 1998). WR acquisition started
at 11:59:44 UTC so the time difference with TSX is about 1 min. From the
radiosonde available from Birmingham (AL) at 12:00 UTC, the freezing level height
was about 4.5 km. The white box shows precipitation around 30.5� N � 89.5�

W. The near-surface conical scan at 0.86� elevation angle and HH-polarized of
NEXRAD rainfall data is compared to the ScanSAR map of TSX HH-polarized
Normalized Radar Cross Section (NRCS) observation. Note that TSX ScanSAR
product has a ground coverage of 154 � 105 km2 and a ground resolution of about
18 � 18 m2. WR reflectivity has a spatial resolution of about 0.25 km in range and
0.5� in azimuth and nominal coverage radius of about 209 km. In the previous figure
it is evident that the correspondence over land between WR higher reflectivity areas
and TSX dark ones. TSX returns over ocean are also detectable by a brighter
incoherent feature with respect to the darker quasi-specular NRCS response, due
to the sea surface. The southern portion of the rain band over ocean corresponds to
WR reflectivity of about 20 dBZ. Values of Z are as high as 59.1 dBZ, indicating
torrential convective rainfall connected to Hurricane Gustav, probably mixed with
some hail.

The correlation between NRCS values σSAR [dB] (filtered and resampled) against
co-located and co-registered WR reflectivity Z [dBZ] for a central Region of Interest
(ROI) is shown in Fig. 18.2. The co-polar radar reflectivity factor Z is proportional to
the radar reflectivity η of the WR through Ζ¼ ηλ4/(π5|K|2)with λ the wavelength and
|K|2 the dielectric factor equal to 0.93 for water (Bringi and Chandrasekar 2001). A
significant negative correlation is present between X-Band σSAR and S-band Z,
demonstrating that the X-SAR NRCS tends to decrease as the S-band WR reflec-
tivity increases, mainly due to the increase of two-way rain path attenuation. The
dynamic range of X-SAR NRCS due to rainfall is about 12 dB. Moreover, X-SAR
NRCS tends to saturate for values of S-band Z of about 25 dBZ and below.
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The dispersion between σSAR and Z is mainly due to the slant-view observation
geometry, surface NRCS variability and the spatial inhomogeneity of hydrometeor
distribution. The trend of this curve is similar to the one indicated in Fritz and
Chandrasekar (2010).

The Tropical Rainfall Measuring Mission (TRMM) satellite observed the area at
about 15:30 UTC of 2 September 2008. The significant time-difference makes a
direct comparison with TSX data impractical. Nevertheless, the TRMM acquisition
allows a qualitative comparison with MW radiometric and radar spaceborne imagers.
In this respect, the principal TRMM instruments are the TRMM Microwave Imager
(TMI), a passive microwave sensor, and the Precipitation Radar (PR), an active one.
Figure 18.3 shows the acquired horizontally polarized TMI brightness temperatures
(TB) at 37 GHz and 85.5 GHz (obtained from TRMM 1B11 product). The TMI
image swath is about 760 km wide, while the ground resolution is about 16 � 9 km2

at 37 GHz and 7 � 5 km2 at 85.5 GHz. The hurricane signature is quite evident, but

Fig. 18.1 (Lower left image) Synoptic view of Hurricane Gustav over south eastern Louisiana on
September 2, 2008 12:00 UTC taken from NEXRAD weather radar reflectivity mosaic. The white
box shows an outer rain band around 30.5� N � 89.5� W. (Central image) Geographic represen-
tation of the NEXRAD image at 0.86� elevation, acquired by the S-band radar (KMOB, in figure)
near Mobile (Alabama). The semi-transparent rectangular box represents the scene of interest,
acquired by TSX X-SAR on 2 September 2008 12:00 UTC in HH polarization and ScanSAR mode
(100 km swath). (Upper right image) TSX quicklook of the acquisition in arbitrary units at 100-m
resolution; flight direction is indicated. (Adapted from Marzano et al. 2010)
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the impact of the different spatial resolution between the two radiometric channels is
also striking. Figure 18.3 also illustrates the PR reflectivity factor (dBZ) at 14 GHz
closest to the surface for both the “normal sampled” range bin 75 and the “rain
oversampled” range bin 16 (as obtained from TRMM 1C21 product). The PR swath
is 220 km for the “normal sampled” product, but it is reduced for the “rain
oversampled” one due to oversampling; the height resolution is about 250 m. The
“rain oversampled” product aims at registering the detailed vertical profile of the
rain. The spiral bands of the hurricane are detectable with a moderate spatial
resolution, but only the combination with TMI can provide the general features of
the hurricane due to the relatively smaller swath. Spaceborne microwave radiometers
(passive instruments) allow a wider swath, but with a rougher resolution with respect
to radars (active instruments). Note that the radar resolution is coarser than the SAR,
but the vertical ranging allows for atmospheric profiling, a feature not possible for
SAR due to their slant observing geometry and surface-tuned receiving time-
window (Marzano et al. 2011).

Fig. 18.2 Correlation diagram between NRCS values X-band σSAR against co-located and
co-registered S-band NEXRAD weather-radar reflectivity Z, for a selected region of interest
(ROI) of the scene. The upper axis provides the estimated rain-rate from NEXRAD data using
the Marshall-Palmer relation (Bringi and Chandrasekar 2001). The best-fitting curve is also plotted.
(Adapted from Marzano et al. 2010)
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18.3 Forward Model of SAR Response to Rainfall

Polarimetric radars are powerful tools for quantitative studies of the properties of
atmospheric hydrometeors (e.g., Bringi and Chandrasekar 2001; Doviak and Zrnić
1993). Conventional radars measure the backscattered intensity from hydrometeors
in a scattering volume defined by the antenna-beam width and the transmitted-pulse
width. For a polydispersion of oblate ellipsoidal particles, with a random distribution
of spherical volume-equivalent diameter D and zenithal canting angle ϕ, being λ the
wavelength corresponding to a frequency f, we can define several RADAR observ-
ables related to the incoming signal power. In particular, ηpq is the pq-polarized radar
reflectivity (in km�1, or backscattering cross section per unit of volume) and can be
expressed in terms of Particle Size Distribution (PSD) N(D), particle orientation
density po(ϕ) and the complex backscattering matrix element Spq(D, ϕ). Instead of

Fig. 18.3 TRMM observations, at 15:30 UTC, for the case study of Hurricane Gustav. (Top
panels) TRMM 1B11 brightness temperature (TB) product relative to TMI channel 7 (37 GHz
horizontal polarization, left), beam effective field-of-view (EFOV) of 16� 9 km2, and TMI channel
9 (85.5 GHz horizontal polarization, right) with a main-beam EFOV of 7� 5 km2. The cyclonic cell
indicated in Fig. 18.2 is well captured. (Bottom panels) The TRMM 1C21 radar reflectivity (dBZ)
product, relative to PR normal sample (left) range bin 75, and PR rain oversampled (right), range
bin 16. Note that the PR swath is 220 km wide (reduced in the oversampled product) and the range
resolution is 0.25 km; TMI swath is 760 km wide. (Adapted from Marzano et al. 2011)
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reflectivity, radar reflectivity factors Zhh, Zvv and Zvh (in mm6 m�3 or dBZ) can be
used. Note that the double subscript stands for the received (first index) and
transmitted (second index) polarization state, which can be either horizontal (h) or
vertical (v). Kdp is the specific differential phase shift (in � km�1) due to the forward
propagation phase difference between the two polarizations. kpp is the specific power
attenuation at polarization p in km�1 (or App if expressed in dB km�1) and is the
counterpart of Kdp in terms of power attenuation per unit length.

Given a volumetric distribution of atmospheric water particles, radar observables
can be used to estimate the SAR signal when observing ground targets in the
presence of atmospheric effects by means of a SAR response forward model. The
next section illustrates the model proposed in Marzano et al. (2012) and Mori et al.
(2017a).

18.3.1 SAR Observing Geometry and Response Model

The fundamental parameter, imaged by SARs, is the Radar Cross Section (RCS) σpq
of the target, defined by Pp ¼ σpq�Sqi/4π, where Pp is the power re-irradiated by the
target at polarization p and Sq

i is the incident power density at polarization q (Ulaby
and Long 2014). While the previous definition corresponds to point targets, NRCS
(also indicated as backscattering coefficient σpq

0) is usually defined as the RCS
normalized to the target area A for distributed targets, that is σpq

0 ¼ σpq/A.
In the presence of precipitation, the SAR backscattering response has to account

for the two-way attenuation of the surface echo due to the atmospheric particles, the
atmospheric volume reflectivity and phase shift.

We can express the spaceborne SAR co-polar and cross-polar NRCS for a given
pixel with coordinates (x,y) on the Earth surface, using a simplified model where the
forward depolarization is neglected and the isorange lines, actually spherical, are
supposed to be planar as shown in Fig. 18.4:

σ0SARpq x, yð Þ ¼ 4π SSARpq
�� ��2D E

¼ σ0SRFpq x, yð Þ þ σ0VOLpq x, yð Þ ð18:1Þ

σ0SRFpq x, yð Þ ¼ σ0groundpq x, yð Þ exp �
Z

Δl x, yð Þ

kqq lð Þdl�
Z

Δl x, yð Þ

kpp lð Þdl

0
B@

1
CA

σ0VOLpq x, yð Þ ¼ sin θð Þ
Z

Δt x, yð Þ

ηpq tð Þ exp �
Z

Δl tð Þ

kqq lð Þdl�
Z

Δl tð Þ

kpp lð Þdl

0
B@

1
CAdt

where θ is the local incident angle, and SSARpq are the elements of the SAR received
backscattering matrix. σ0SRFpq(x,y) (in m2 m�2) is the “surface-driven” backscatter-
ing coefficient, that is the surface target NRCS σ0groundpq (superscript “ground” here
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refers to the surface target property) attenuated by the two-way path through the
precipitating atmosphere, whereas the term σ0VOLpq(x,y) (m

2 m�2) is the “volume-
driven” backscattering due to hydrometeor reflectivity, weighted by the two-way
path through the precipitating atmosphere. The spatial transverse coordinates l and
t along the atmospheric path (in km), inherently depend on the Cartesian coordinate
in the volume (x,y,z). The path from the radar to the surface target at (x,y) is Δl(x,y).
Note that the volume term accounts for the contributions to the SAR echo due to the
atmospheric hydrometeors encountered by the path-attenuated SAR wave front
aligned along the transverse coordinate t and in the same resolution cell Δr. The
scattered wave from hydrometeors, encountered at position t along the transverse
line, experiences an attenuation along the path Δl(t) when propagating back to the
radar. The SAR model geometry, shown in Fig. 18.4, depicts a possible enhance-
ment of the background response at near range, due to frozen particle scattering at
high altitudes, followed by an intense attenuation of the background signal, due to
the path attenuation through the rain cloud. This pattern is evident in the case of
Fig. 18.4.

Spaceborne satellite SARs usually allow the observation of the co-polar elements
of the 3 � 3 ensemble-average scattering covariance matrix CSAR. Operational SAR
systems may allow the measurement of the cross-polar elements, whereas co-polar
backscattering coefficients are always available. We can define the following SAR

Fig. 18.4 Schematic SAR NRCS (in dB) as a function of cross-track scanning distance x, showing
enhanced values on the left of the cross-over point caused by scattering from the cloud top and
attenuation from rain in the lower cloud on the right. The viewing angle with respect to nadir
(incidence angle) is θ, while the cloud extension is w. The symbol Δr indicates the width of the slant
slice of the atmosphere representing the SAR side-looking resolution volume. The figure also shows
the energy fluxes and the e.m. parameters of the model according to Marzano et al. (2012) and Mori
et al. (2017a)
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polarimetric observables (e.g., Bringi and Chandrasekar 2001; Marzano et al. 2012;
Ulaby and Elachi 1990):

σSARppqq x, yð Þ ¼ 4π SSARpp x, yð ÞS�SARqq x, yð Þ
D E

ð18:2Þ

σSARpq x, yð Þ ¼ 4π SSARpq x, yð ÞS�SARpq x, yð Þ
D E

ð18:3Þ

ZSARco x, yð Þ ¼ σSARhh x, yð Þ
σSARvv x, yð Þ ð18:4Þ

ρSARco x, yð Þ ¼ SSARvv x, yð ÞS�SARhh x, yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSARhh x, yð Þj j2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSARvv x, yð Þj j2

q ¼

ρSARco x, yð Þj j exp jΨSARco x, yð Þð Þ
ð18:5Þ

where σSARpq is the pq-polarized NRCS (or backscattering coefficient,
adimensional), and σSARhv the cross-polarizations and σSARhh, σSARvv the
co-polarizations. The term σSARppqq describes the cross term among orthogonal
polarizations. ZSARco is the co-polar ratio (or difference, if expressed in decibels),
whereas ρSARco is the complex correlation coefficient (or degree of correlation,
adimensional), expressed by an amplitude |ρSARco| and a phase Ψ SARco.

When dealing with the co-polar differential phase, the SAR polarimetric phase
model needs to account for the slant observing geometry within a precipitation
medium (see Fig. 18.4). In clear sky the SAR phase response is given by the ground
polarimetric differential phase, indicated by δ0co(x,y), due to the surface interaction.
The path through the hydrometeors adds a two-way rotation along the incident path,
given by the path integral of the specific differential phase Kco(x,y,z) (propagation
phase shift). The precipitation-cell backscatter also introduces a differential phase,
δco(t), i.e. the phase rotation between Shh and Svv of the scattering volume (depending
on the cell position, t), additionally affected by the 2-way path from the same volume
to the radar (Bringi and Chandrasekar 2001; Marzano et al. 2012). According to
Matrosov et al. (1999), values of δco are small for S-band wavelengths even for
intense rainfall rates; however, at X band it is negligible only for modest precipita-
tion rates, wheras at Ka band values, δco can be very significant even for modest
rainfall rates. A formulation of the observable SAR complex correlation coefficient
for a ground point (x,y) is presented in Marzano et al. (2012) and revised in Mori and
Marzano (2017a) in the form:

ρSARcoðx, yÞ ¼
f ðσ0groundvv , σ0groundhh , ρ0coÞ � Lðkhh, khh,KcoÞ þ sinðθÞR

Δt
CvolðtÞdt

f 0ðσSARhh, σSARvvÞ ð18:6Þ

CvolðtÞ ¼ f 00ðηhh, ηhh, ρcoÞ � Lðkhh, khh,KcoÞ
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where ρ0co x, yð Þ ¼ ρ0co x, yð Þ�� �� exp jδ0co x, yð Þ� �
is the complex correlation coefficient of

the ground target and ρco(x, y) ¼ |ρco(x, y)| exp ( jδco(x, y)) is the complex correlation
coefficient of the atmospheric volume. L(�) is a functional term accounting for the
two-way path attenuation and f(�), f’(�), f”(�) are complex functions of the surface
and volume scattering matrix elements, depending respectively on ground target,
SAR received signal and atmospheric volume. Note that in the literature, the
computation of δco(x,y) is simplified as it is assumed equal to δco ¼ arg(ρco) of the
scattering cell in position x,y (Marzano et al. 2012), or ignored as in Fritz and
Chandrasekar (2012).

Marzano et al. (2012) suggest a significant correlation between the SAR NRCS
and the slant-integrated water contents. The SAR response seems to be mainly
governed by the surface contribution σSRF, except when the two-way path within
precipitation is relatively long and medium attenuation is sufficiently strong. In the
latter case, the volume contribution σVOL tends to saturate and the relation between
SAR NRCS and integrated water contents is much more dispersed. Moreover, the
SAR response appears strongly affected by ground surface response and, to a limited
extent, by the observing incident angle. The analysis at different bands suggests
different SAR responses, with the X-band NRCS not being strongly influenced by
frozen hydrometeors, while this is not necessarily true for Ka-band NRCS.

The polarimetric modelling of SAR response requires knowledge of the electro-
magnetic signatures of each water particle class affecting the wave propagation. We
can define a particle class as a group, such as “moderate rain” drops or “dry snow”
flakes, characterized in terms of shape, radius, PSD, temperature, composition (e.g.,
Marzano et al. 2008). The complexity of this approach can be simplified using an
approximate but reasonable approach where the electromagnetic signature of each
class is expressed through semi-empirical models of a bulk parameter, such as the
water content W(x,y,z) (in g m�3), defined for each classes. This is the approach
followed in Marzano et al. (2012) at X-Band where the power-law formula has been
used to model specific attenuation kpq(x,y,z) (in dB km�1), equivalent reflectivity
Zepq(x,y,z) (in mm6 m�3), differential phase Kco(x,y,z) (in � km�1), modulus and
argument of the co-polar correlation coefficient ρco(x,y,z) (adim). A typical paramet-
ric expression has the form of kpq x, y, zð Þ ¼ apqW x, y, zð Þbpq .

18.3.2 Example of Precipitation-Affected SAR Scene

The model proposed in Sect. 18.3.1 can be used in order to numerically simulate the
SAR response for a given scene. This requires a SAR ground response model and
simulations of atmospheric water particle distributions. Realistic clouds are difficult
to retrieve from in situ and remote measurements and, in this respect, synthetic
clouds can be simulated more easily by cloud-resolving models. For sensitivity
analysis, canonical clouds with a rectangular shape on the x-z plane and stratified
in the vertical direction, composed by 1 or 2 uniform constituents (e.g., clouds,
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moderate rain drops or dry snowflakes), can be also employed, as in Weinman and
Marzano (2008) and Marzano and Weinman (2008).

Clouds can be simulated using the Weather Research and Forecasting (WRF)
model (Michalakes et al. 2005) or the System for Atmospheric Model (SAM) Cloud
Resolving Models (CRMs), as well as other Numerical Weather Prediction (NWP)
models. SAM is a high-resolution (250 m) model, which simulates the 3-D water
content distribution (g m�3) of several kinds of hydrometeors, both precipitating
(snow, graupel and rain) and non-precipitating (cloud ice, cloud liquid) (Blossey
et al. 2007). A simulated SAM vertical section is given in Fig. 18.5 as an example.

A relatively simple surface target within the SAR response model is represented
by bare soil. The Semi-Empirical Model (SEM) of Oh et al. (2002) allows simulation
of the complete SAR polarimetric response of a realistic bare soil with a root mean
square (RMS) height (ks), a correlation length (kl) and a volumetric soil moisture
content (mv). The simulation of Fig. 18.6 uses 1.5 cm, 5.0 cm and 0.25 cm3 cm�3 as
values of the three parameters, respectively. Other effective surface targets,
representing many other targets and their combination, are represented by canonical
targets including spheres, cylinders and dihedrals. Their combination may represent

Fig. 18.5 Example of System for Atmospheric Model (SAM) vertical slice for a Compact Medium
Single Cell cloud. Values indicate water contentW in g m�3 of the simulated distributions of snow,
rain, ice and cloud particles
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many natural targets according to the Freeman-Durden polarimetric decomposition
(e.g., Cloude 2010). Their scattering matrix in BSA (BackScatter Alignment) con-
vention is reported in Ulaby and Elachi (1990). The simulation of Fig. 18.6 considers
spheres of 0.3 m, dihedrals of 0.025 m and cylinders of 0.030 m and 0.002 m radius,
at 45� rotation. Note that NRCSs are function of target dimensions, differently from
target complex correlation coefficients that are independent of dimension. In this
simplified scenario, canonical targets are supposed to fill the ground scene, one
target per ground cell.

Fig. 18.6 shows an example of realistic SAR responses in the presence of
precipitation, for different ground targets and frequency using the model of Sect.
18.3.1. For NRCS the signal is sensitive to precipitation and frequency, as well as the
precipitation pattern described in Sect. 18.3.1. At C band ground targets could be
easily recognized, while at Ka band their response is similar; on the other hand,
Ka-band response appears more sensitive to ice (the small peak at around km 48).
Polarimetry can give useful information only at C Band. The interpretation of the
complex correlation coefficient is more difficult, even if the volumetric effects is
present in all bands as well as the sensitivity to different targets. The dihedral-type
surface always allows the detection of clouds, whereas sphere-type surface rarely
permit it. In terms of phase, the presence of a cloud introduces a significant phase
rotation.

Fig. 18.6 SAR simulated response in terms of normalized Radar cross section σSARhh (horizontal
transmitted and received), co-polar ratio ZSARco and complex correlation coefficient ρSARco for the
SAM realistic cell of Fig. 18.5. Four SAR frequencies are evaluated (5.4, 9, 14 and 35 GHz).
Considered background are Spheres, Dihedrals, Cylinders, and a semi-empirical bare soil scattering
model (SEM)
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18.4 SAR Precipitation Retrieval Techniques

In order to convert X-SAR measurements into near-surface rain-rate R(x,y) (in mm
h�1), it is necessary to apply an inversion algorithm, such as the ones proposed in
Marzano and Weinman (2008) and Weinman and Marzano (2008), starting from the
intuition of Pichugin and Spiridonov (1991). Other easier approaches have been
proposed, based on the difference (in dB) between the background NRCS
σpp

0ground(x,y) and the retrieved NRCS σ0SARpp(x,y):

ΔσSARdB x, yð Þ ¼ σ0groundpp x, yð Þ � σ0SARpp x, yð Þ ð18:7Þ

Note that ΔσSARdB is usually positive for rainfall observations and tends to be
negative for significant backscattering effects due to edge effects from the upper
rain-cloud, as discussed in Sect. 18.3.

18.4.1 Data Pre-processing

X-Band SAR products, distributed by space agencies, differ in their ground resolu-
tion and areal extent, usually with an inverse relation, depending on the observing
method (e.g., Ulaby and Long 2014). Usually Spotlight, Stripmap or Scansar modes
are available, whereas SAR products can vary with the processing level. Using the
COSMO-SkyMed notation (but similar to TerraSAR-X), the Single-look Complex
Slant (SCS) outputs are the basic product available for users. Multilook Ground
Detected (MGD) products are obtained through a further processing where the
focused SCS is detected, radiometrically equalized and projected in range-azimuth.
Further data processing envisages the correction for ellipsoid (Geocoded Ellipsoid
Corrected, GEC) or terrain (Geocoded Terrain Corrected, GTC) and consequent
projection on a cartographic reference system (Fritz and Eineder 2013; ASI 2009).
SCS, MGD, GEC and GTC are usually indicated as Level-1 products.

For X-SAR precipitation estimation the GTC product can be used, directly
dowloadable from the archives or self-produced from a SCS product using a proper
processing tool (such as ENVI-SARSCAPE®). GTC product has a reduced speckle,
due to 6-look averaging and approximately a square resolution on the ground of
about 18 � 18 m2 with a pointing knowledge error of less than 20 m. Both Stripmap
and Scansar acquisition modes are suitable for precipitation analysis. The Stripmap
mode has a ground coverage of about 30 � 30 km2 with a resolution of about 15 m/
pixel, whereas Scansar has a coverage of 200 � 200 km2 with a resolution of about
30 m/pixel. These numbers refer to CSK, but they are similar in TSX.With respect to
the polarization, the horizontally transmitted and horizontally received (HH) signal
is preferable, being more sensitive to raindrop oblate shapes.

Several of the proposed SAR-based retrieval methods require a calibration with
ground measurements. Doppler weather radar data, which allows relatively wide
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coverage, continuous monitoring and a suitable range resolution, is the most suitable
one. The overlapping SAR/WR data is affected by the difference in acquisition
geometry and frequency band (Fritz and Chandrasekar 2010). Weather radar
co-polar horizontally-polarized (HH) reflectivity factor Z can be converted into
rain rates using empirical relationships which generally have the form of a power
law. The suggested retrieval relation for the rainfall field RWR(x,y) in the x-y
horizontal plane is:

bRWR x, yð Þ ¼ Z x, yð Þ
an

� �1=bn
ð18:8Þ

with an ¼ 300 and bn ¼ 1.4 for S-band NEXRAD and an ¼ 200 and bn ¼ 1.6 for a
standard Marshall-Palmer formula where R is in mm h�1 and Z is in linear units
mm6 m�3 (e.g., Bringi and Chandrasekar 2001). For Z corresponding to 59.1 dBZ
(such as the case presented in Sect. 18.2), the NEXRAD Z-R and Marshall-Palmer
yield R of about 283 and 180 mm h�1, respectively. Strictly speaking, it is not correct
to invert a statistical relation Z-R to get R-Z as in (18.8) due to different error
minimization; however, this approximation is a common practice in operational
radar meteorology.

In order to make SAR observation comparable with WR data, both WR and
X-SAR images have to be co-registered and X-SAR images degraded through an
appropriate moving-average filter at the resolution of about 0.5-km size and down-
sampled at about 0.5 km ground resolution. This resolution is an upper-limit estimate
consistent with the effective resolution of SAR data processing applied to incoherent
moving targets such as precipitation (Marzano et al. 2010).

18.4.2 Regressive Empirical Algorithm (REA)

An effective model for radar precipitation analysis is the power-law expression to
estimate of the rain-rate profile RREA(x,y) (in mm h�1), expressed by:

bRREA x, yð Þ ¼ ae ΔσSARdB x, yð Þ½ �be ð18:9Þ

where X-band ΔσSARdB � 0 and the empirical coefficients ae and be may be
geographically and climatologically dependent as it happens for WRs in terms of
reflectivity and rain-rate. The X-SAR side-viewing geometry introduces a charac-
teristic pattern of the observed NRCS due to the increasing attenuation path as the
incident radar ray moves within the precipitation cell from near to far ranges (e.g.,
Weinman and Marzano 2008). This deformation is such that the X-SAR tends to
underestimate rainfall intensity at the near-range edges and to overestimate it at the
far-range edges with an apparent broadening of the rainfall footprint. In order to take
these geometrical effects into account, Eq. (18.9) can be modified by introducing a
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factor fG(x) that accounts for the location of a pixel with respect to the edge cell. For
heavy rainfall intensity, the model of (18.9) tends to underestimate the volumetric
backscattering contribution σ0VOLhh, but this effect may be partially corrected by a
first-order approach. The derived formulation of (18.9), proposed in Marzano et al.
(2011) and called Modified Regression Empirical Algorithm (MREA), is:

bRMREA xð Þ ¼
ΔσSARdB xð Þ þ bvΔσSARdB xð Þcv

a

� �1
b 1
x� x0

� �ce
x0 þ E 	 x 	 x0 þ w

0 otherwise

8>><
>>:

ð18:10Þ

where the parameters a, b, bv, cv and ce are empirical coefficients. Using WR
reflectivities Z, Eq. (18.8) with Marshall-Palmer coefficients and corresponding
SAR ΔσSARdB with an average background σhh

0ground ¼ �7.9 dB, estimated coeffi-
cients are, respectively, 0.0089, 2.4595, 0.1216, 3.8979 and �0.0230 through a
linear regression (Marzano et al. 2011). In (18.10) the along-track variable y has been
omitted, since the formual is intended for across-track corrections only. The param-
eter x0 is the near-range edge of the rain cloud with w its estimated across-track
width. The parameter ε in (18.10) is introduced to prevent the singularity in x ¼ x0
and is usually equal to few pixels in the ground range. Eq. (18.10) applies to all the
X-SAR pixels where ΔσSARdB � 1 taking into account the σhh

0ground background
uncertainty.

Applying (18.10) to the Hurricane Gustav case of Sect. 18.2, a quantitative
analysis of the error with respect to WR-based estimates shows that the correlation
coefficient is 0.75, the error bias�0.66 mm h�1, the root mean square error (RMSE)
22.28 mm h�1 and the Fractional RMSE (FRMSE) of about 0.98 (where FRMSE is
defined as the ratio between estimation RMSE and root-mean-square value of RWR

over the whole dataset).

18.4.3 Probability Matching Algorithm (PMA)

A second approach, described in Marzano et al. (2010), employs a probability
matching approach over a given target area (Calheiros and Zawadzki 1987). Once
estimated the probability density function pWR(RWR) of WR-based rain rate RWR,
and the probability density function pSAR(ΔσSARdB) of measured X-SAR differential
NRCS ΔσSARdB, the PMA method can be simply written as follows:
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Z bRPMA

Rt

pWR RWRð ÞdRWR ¼
Z ΔσSARdB

ΔσdBt

pSAR ΔσSARdBð ÞdΔσSARdB ð18:11Þ

where Rt and ΔσdBt are rain-rate and differential σSARdB lower threshold values (e.g.,
equal to 0.1 mm h�1 and 0.5 dB, respectively). The integrals in (18.11) represent a
probability (or cumulative distribution function) and if computed for increasing
values of the extremes, yield an expression for PMA:

bRPMA x, yð Þ ¼ f PM ΔσSARdB x, yð Þð Þ ð18:12Þ

where fPM is a functional which can be either implemented as a look-up table of
RPMA and NRCS records or as a polynomial regressive curve. Applying PMA to
the case of Sect. 18.2, yields an estimated mean error of 3.1 mm h�1, an RMSE of
about 13.2 mm h�1 and a correlation coefficient of 0.64.

18.5 Applications

18.5.1 Improving SAR Retrieval Using Background
Estimation

The MREA methodology, described in Sect. 18.4.2, requires the knowledge of
background NRCS in the absence of precipitating clouds. Moreover, MREA applies
to the entire scene, including flooded areas, permanent water bodies and orographic
shadows. These limitations can lead to severe estimation errors or misinterpretations
of the scene. Improvements to MREA estimations can arise from a pre-processing
step to select only areas affected by precipitations and trying to estimate the clear-sky
background NRCS of these areas.

Pulvirenti et al. (2014) propose the classification methodology indicated as SAR
Images Dark Object Classifier (SIDOC) that allows the differentiation of “water
surfaces” from areas affected by precipitation, both appearing dark in X-SAR
imagery. Water surfaces may include both permanent water bodies, such as lakes
or rivers, and flooded areas and, in this respect, SIDOC shows its usefulness in both
detecting areas affected by precipitations and in detecting flooded areas. SIDOC uses
several ancillary data, such as Digital Elevation Model (DEM), static land cover and
Local Incident Angle (LIA) maps. SIDOC consist of several steps, summarized in
Fig. 18.7.

The SIDOC first step detects low backscatter areas in the input image, using a
supervised Split Based Approach (SBA) and fuzzy logic that lead to determining a
mean threshold, more or less suitable for the whole scene. Output of this step is a
segmented map, in which the detected areas are distinguished and labelled as
contiguous pixels, and a raw classification map, where pixel with high LIA (that
clearly cannot be plain surfaces) are distinguished from the others. In the SIDOC
second step, the remaining pixel are processed to extract shape features, such as area,
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perimeter and complexity (weighted ratio between area and perimeter): these fea-
tures and fuzzy logic (together with land cover) are used to distinguish flooded areas
from areas affected by precipitations.

In order to produce precipitation maps, two further steps are necessary (Mori et al.
2016). The first one consists of estimates the X-SAR ground surface response for
those pixels detected as dark by SIDOC. The reconstructed σpp

0ground is estimated as
the mean value of the pixel near the outer border of the cloudy ones, belonging to the
same land cover class and not affected by cloud or water effects. This realistic cloud-
free image of the observed scene is then ingested in the MREA precipitation
estimation procedure.

18.5.2 Statistical Approaches for Retrieval Validation

X-SAR precipitation detection and estimation errors should be ideally verified
through ground-truth data of the analyzed area at the same time and at a similar
resolution as the SAR acquisition. Unfortunately, this goal can rarely be achieved,
due to the SAR high spatial resolution and relative wide coverage area and SAR near
instantaneous acquisition time. A good compromise is available through the use of
ground-based weather radars, that ensure a wide and uniform coverage, at a com-
parable ground resolution. WR volume acquisition time is quite long (about 5 min to
complete a volume production) as compared to SAR, causing possible misalign-
ments between the two data series. Moreover, the two acquisition geometries, the
image formation and often the scanning frequency are quite different, resulting in
another source of error. Note that WR precipitation real-time rain products can be
affected by numerous sources of errors such as wet radome, spatial variability of
particle size distribution, and system miscalibration (e.g., Bringi and Chandrasekar
2001).

Statistical approaches can be also considered for SAR-based retrieval analysis.
The first and second order statistics of these errors can be evaluated (e.g., Stein et al.
2002). First-order statistics indicates a comparison of the spatial distribution of the
retrieved rain values regardless the spatial organization of the retrieved rain fields.
For this purpose, we can use the Complementary Cumulative Distribution Function
(CCDF) defined as follows:

MREASIDOCSAR image

Local Incident Angle

Digital Elevation Model

Land Cover

Dark Detection
and segmentation

- Raw Classification

Shape feature
extraction - Fine

Classification

X-SAR ground
surface

estimation

Precipitation
Rate

estimation

Classification
map

Estimated
clear-sky

NRCS image

Precipitation
map

Fig. 18.7 Flowchart of the procedure described in Mori et al. (2016) for detecting flooded and
cloud areas in X-SAR images and estimating the relative precipitation rate
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CCDF Xthð Þ ¼ 1� P X sð Þ > Xthð Þ 8s 2 D ð18:13Þ

In (18.13) P denotes probability, Xth is a threshold, D the spatial domain where
the rain retrieval is carried out and X(s) is a variable sampled at spatial and temporal
position s ¼ (x,y,t). Second-order statistics characterizes the spatial correlation
structure of the rain fields, describing the spatial variability of the variable under
investigation at different spatial scales. In this respect, we can use a semi-variogram
γX(l) of the variable X, defined as:

γX lð Þ ¼ 1
2

X sþ lð Þ � X sð Þj j2
D E

s
ð18:14Þ

where l is the lag distance and s a generic position. These statistical approaches allow
a comparison between WR and X-SAR data in terms of precipitation structure even
though it reduces the SAR precipitation map to the resolution of the WR (Mori et al.
2016).

18.5.3 Case Study

The whole processing and validation chain of Sects. 18.5.1 and 18.5.2 is applied in
Mori et al. (2016) to a couple of COSMO-SkyMed case studies. We have selected
one of these cases as an application example, also for the geographical, spatial and
instrumental differences with respect to the example of Sect. 18.2. The selected case
is a CSK Ping-Pong acquisition over Italy (Voghera area), which occurred on 7 July
2007 at 05:18 UTC during a mid-latitude intense precipitation. The area is centered
at 44.99�N – 8.94�E and covers 30 � 30 km2 (Fig. 18.8).

Only the SCS HH channel has been processed in ENVI-SARSCAPE® in order to
produce a calibrated multilooked product at 20-m pixel resolution together with
DEM correction using SRTM data and UTM projected using WGS84 ellipsoid.
Ground WR data are C-Band Vertical Maximum Intensities (VMI, in dBZ) obtained
by the Italian national mosaic, with an acquisition frequency of 15 min and a ground
resolution of about 1 km2.

The precipitation maps, derived from SAR and WR data, are shown in Fig. 18.9.
The land cover, used by SIDOC, is the Corine Land Cover (CLC) 2012, ensuring a
minimum spatial resolution of 25 ha/100 m and 15 classes (at Level-II). The SARmap
has been filtered with a texture filter and degraded to WR resolution in order to extract
the map feature. WR precipitation map has been obtained using the standardMarshall-
Palmer formula. Even if the SAR is sensitive only to moderate-to-intense precipita-
tions areas, the geographic correspondence betweenWR and SAR precipitation map is
fairly good with a displacement mainly due to the significant time difference between
the two acquisitions (Fig. 18.10). In terms of accuracy, the mean error is
�2.64 mm h�1 and RMSE is 15.78 mm h�1. The CCDF comparison in Fig. 18.10
shows a tendency to overestimation, mainly due to the sensitivity of X-SAR to the
intense portion of the rain event (leading to select only a part of the WR retrievals).
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Fig. 18.8 Voghera case study. Left image is a geocoded quicklook of the CSK acquisition (at 05:18
UTC). Right figure shows the corresponding Italian National Mosaic Vertical Maximum Intensities
(VMI) at 05:30 UTC (~15 min acquisition time); the ellipse approximately encloses the case study
area. (Adapted from Mori et al. 2017b)
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Fig. 18.9 Precipitation maps for the case study of Fig. 18.8. Left map is obtained from X-SAR data
with the procedure of Sect. 18.5.1 (filtered and smoothed to WR resolution), right map is obtained
by WR VMI data and a Marshall-Palmer formula. (Adapted from Mori et al. 2017b)
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18.6 Conclusion

Hydrometeorological applications can represent an appealing goal for spaceborne
SAR missions, especially if high spatial resolution is requested. Forward and inverse
models for SAR precipitation retrieval at X-band have been presented and discussed
in this chapter. The SAR use at C band for flood monitoring is well established, but
SAR observations can be also exploited for detecting marine winds and hurricanes.
The use of Ku and Ka-band SARs for cryosphere applications has been also
proposed, as in the CoRe-H2O mission concept (ESA 2012), but these SAR
frequencies can be also exploited for precipitating cloud observation.

Spaceborne SARs can ensure a global coverage whose orbit duty cycle can be
improved by satellite constellations, such as for COSMO-SkyMed, or operating in
quasi-continuous acquisition mode, such as for Sentinel-1 satellites. Their ground
spatial resolution remains unparalleled by other satellite microwave instruments. A
multi-frequency SAR system can probe precipitating clouds with high-frequency
sensors sensitive to stratiform rainfall and low-frequency sensors capable to sensing
more intense near-surface precipitation. Most of the work to date has focused on
rainfall retrievals over land while retrievals over the ocean are a future objective for
X-SAR rain estimation at high spatial resolution. SAR slant-viewing geometry and
precipitation retrieval processing still present several open issues to be explored in
order to refine the physical-statistical retrieval approaches.

SAR future is characterized by the proposal of new space mission concepts and
technologies. Recent studies exist for a geostationary SAR (e.g., Monti Guarnieri
and Hu 2016) with possible hydrometeorological applications. The increasing of
swath width without losing spatial resolution is under investigation by means of
High Resolution Wide Swath (HRWS) SARs. Other researches explore the

Fig. 18.10 Right plot shows the analysis of the position error between the WR precipitation map
(shaded background) and the SAR one (foreground) for the case study of Fig. 18.8. Values have
been normalized to the maximum of the dataset. Note that the WR data precedes the SAR data by
~12 min. Left plot shows Complementary Cumulative Distribution Function (CCDF) for the same
case study. Blue lines represent SAR data degraded at WR resolution (1000 m); red lines represent
WR data. (Adapted from Mori et al. 2017b)
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feasibility and opportunity of SAR operating at Ka band for single pass interferom-
etry, but also addressing the atmospheric influence. The KydroSAT mission concept
(Mori et al. 2017b) proposes a SAR space mission entirely devoted to hydrology and
cryology. KydroSAT mission concept foresees a miniaturized fully-digital SAR at
Ku and Ka band (KydroSAR), specifically devoted to detecting and estimating
atmospheric precipitation and surface snow; its baseline includes dual-polarization
capability, high orbit duty cycle (>75%), flexible ground resolution (5–150 m), and a
large variable swath (50–150 km), doubled by formation of two mini-satellites both
carrying a KydroSAR. Moreover, the KydroSAT mission concept foresees the
along-track convoy with the COSMO-SkyMed and SAOCOM SAR platforms,
allowing the observation of the same scene at L, X, Ku and Ka bands. The
challenging requirements of this architecture require the development of new tech-
nologies such as Digital Beam Forming and direct digital-to-radiofrequency conver-
sion, which are current frontiers in SAR research. These candidate missions can
effectively contribute and extend the capability to observe the precipitating clouds at
high resolution, according to the principles and techniques discussed in this chapter.
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