Info-Gap Decision Theory is adopted to assess the robustness of a technique aimed at identifying the optimal excitation signal to be used for active sensing approaches to damage detection. Here the term "active sensing" refers to procedures where a known input is applied to the structure to enhance the damage detection process. Given limited system response measurements and ever-present physical limits on the level of excitation, the ultimate goal of the mentioned technique is to improve the detectability of damage by increasing the difference between measured outputs of the undamaged and damaged systems. In particular, a two degree-of-freedom mass-spring-damper system characterized by the presence of a nonlinear stiffness is considered. Uncertainty is introduced to the system in the form of deviations of its parameters (mass, stiffness, damping ratio) from their nominal values. Variations in the performance of the mentioned technique are then evaluated both in terms of changes in the estimated difference between the responses of the damaged and undamaged systems and in terms of deviations of the identified optimal input signal from its nominal estimation. Finally, plots of the performances of the analyzed algorithm for different levels of uncertainty are obtained, enabling a clear evaluation of the risks connected with designing excitation signals for damage detection, when the parameters that dictate system behavior (e.g. stiffness, mass) are poorly characterized or improperly modeled.
Info-gap robustness of an input signal optimization algorithm for damage detection / Pasquali, M.; Stull, C. J.; Farrar, C. R.. - In: MECHANICAL SYSTEMS AND SIGNAL PROCESSING. - ISSN 0888-3270. - 50-51:(2015), pp. 1-10. [10.1016/j.ymssp.2014.05.038]
Info-gap robustness of an input signal optimization algorithm for damage detection
Pasquali M.
;
2015
Abstract
Info-Gap Decision Theory is adopted to assess the robustness of a technique aimed at identifying the optimal excitation signal to be used for active sensing approaches to damage detection. Here the term "active sensing" refers to procedures where a known input is applied to the structure to enhance the damage detection process. Given limited system response measurements and ever-present physical limits on the level of excitation, the ultimate goal of the mentioned technique is to improve the detectability of damage by increasing the difference between measured outputs of the undamaged and damaged systems. In particular, a two degree-of-freedom mass-spring-damper system characterized by the presence of a nonlinear stiffness is considered. Uncertainty is introduced to the system in the form of deviations of its parameters (mass, stiffness, damping ratio) from their nominal values. Variations in the performance of the mentioned technique are then evaluated both in terms of changes in the estimated difference between the responses of the damaged and undamaged systems and in terms of deviations of the identified optimal input signal from its nominal estimation. Finally, plots of the performances of the analyzed algorithm for different levels of uncertainty are obtained, enabling a clear evaluation of the risks connected with designing excitation signals for damage detection, when the parameters that dictate system behavior (e.g. stiffness, mass) are poorly characterized or improperly modeled.File | Dimensione | Formato | |
---|---|---|---|
Pasquali_Info-gap_2015.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
511.45 kB
Formato
Adobe PDF
|
511.45 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.