We present asymptotically sharp inequalities, containing a 2nd term, for the Dirichlet and Neumann eigenvalues of the Laplacian on a domain, which are complementary to the familiar Berezin–Li–Yau and Kröger inequalities in the limit as the eigenvalues tend to infinity. We accomplish this in the framework of the Riesz mean R1(z) of the eigenvalues by applying the averaged variational principle with families of test functions that have been corrected for boundary behaviour.
Complementary asymptotically sharp estimates for eigenvalue means of laplacians / Harrell, Evans; Provenzano, Luigi; Stubbe, Joachim. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - 11(2021), pp. 8405-8450. [10.1093/imrn/rnz085]
Titolo: | Complementary asymptotically sharp estimates for eigenvalue means of laplacians | |
Autori: | ||
Data di pubblicazione: | 2021 | |
Rivista: | ||
Citazione: | Complementary asymptotically sharp estimates for eigenvalue means of laplacians / Harrell, Evans; Provenzano, Luigi; Stubbe, Joachim. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - 11(2021), pp. 8405-8450. [10.1093/imrn/rnz085] | |
Handle: | http://hdl.handle.net/11573/1447294 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Harrell_Complementary_2019.pdf | Versione editoriale (versione pubblicata con il layout dell'editore) | ![]() | Administrator Richiedi una copia |