We survey a few trace theorems for Sobolev spaces on N-dimensional Euclidean domains. We include known results on linear subspaces, in particular hyperspaces, and smooth boundaries, as well as less known results for Lipschitz boundaries, including Besov's Theorem and other characterizations of traces on planar domains, polygons in particular, in the spirit of the work of P. Grisvard. Finally, we present a recent approach, originally developed by G. Auchmuty in the case of the Sobolev space H-1(Omega) on a Lipschitz domain Omega, and which we have further developed for the trace spaces of H-k(Omega), k >= 2, by using Fourier expansions associated with the eigenfunctions of new multi-parameter polyharmonic Steklov problems.
On trace theorems for sobolev spaces / Lamberti, Pd; Provenzano, L. - In: LE MATEMATICHE. - ISSN 0373-3505. - 75:1(2020), pp. 137-165. [10.4418/2020.75.1.8]
Titolo: | On trace theorems for sobolev spaces | |
Autori: | ||
Data di pubblicazione: | 2020 | |
Rivista: | ||
Citazione: | On trace theorems for sobolev spaces / Lamberti, Pd; Provenzano, L. - In: LE MATEMATICHE. - ISSN 0373-3505. - 75:1(2020), pp. 137-165. [10.4418/2020.75.1.8] | |
Handle: | http://hdl.handle.net/11573/1446700 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Lamberti_On-trance-theorems_2020.pdf | Versione editoriale (versione pubblicata con il layout dell'editore) | ![]() | Administrator Richiedi una copia |