We consider eigenvalue problems for general elliptic operators of arbitrary order subject to homogeneous boundary conditions on open subsets of the Euclidean N-dimensional space. We prove stability results for the dependence of the eigenvalues upon variation of the mass density and we prove a maximum principle for extremum problems related to mass density perturbations which preserve the total mass.
A maximum principle in spectral optimization problems for elliptic operators subject to mass density perturbations / Lamberti, Pier Domenico; Provenzano, Luigi. - In: EURASIAN MATHEMATICAL JOURNAL. - ISSN 2077-9879. - 4:(2013), pp. 70-83.
Titolo: | A maximum principle in spectral optimization problems for elliptic operators subject to mass density perturbations | |
Autori: | ||
Data di pubblicazione: | 2013 | |
Rivista: | ||
Citazione: | A maximum principle in spectral optimization problems for elliptic operators subject to mass density perturbations / Lamberti, Pier Domenico; Provenzano, Luigi. - In: EURASIAN MATHEMATICAL JOURNAL. - ISSN 2077-9879. - 4:(2013), pp. 70-83. | |
Handle: | http://hdl.handle.net/11573/1446695 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Lamberti_A-maximum-principle_2013.pdf | Versione editoriale (versione pubblicata con il layout dell'editore) | ![]() | Administrator Richiedi una copia |