We present upper and lower bounds for Steklov eigenvalues for domains in R^N+1 with C^2 boundary compatible with the Weyl asymptotics. In particular, we obtain sharp upper bounds on Riesz-means and the trace of corresponding Steklov heat kerne. The key result is a comparison of Steklov eigenvalues and Laplacian eigenvalues on the boundary of the domain by applying Pohozaev-type identities on an appropriate tubular neigborhood of the boundary and the min-max principle. Asymptotically sharp bounds then follow from bounds for Riesz-means of Laplacian eigenvalues.

Weyl-type bounds for Steklov eigenvalues / Provenzano, Luigi; Stubbe, Joachim. - In: JOURNAL OF SPECTRAL THEORY. - ISSN 1664-039X. - 1:9(2019), pp. 349-377. [10.4171/JST/250]

Weyl-type bounds for Steklov eigenvalues

Luigi Provenzano;
2019

Abstract

We present upper and lower bounds for Steklov eigenvalues for domains in R^N+1 with C^2 boundary compatible with the Weyl asymptotics. In particular, we obtain sharp upper bounds on Riesz-means and the trace of corresponding Steklov heat kerne. The key result is a comparison of Steklov eigenvalues and Laplacian eigenvalues on the boundary of the domain by applying Pohozaev-type identities on an appropriate tubular neigborhood of the boundary and the min-max principle. Asymptotically sharp bounds then follow from bounds for Riesz-means of Laplacian eigenvalues.
2019
Steklov eigenvalue problem; Laplace–Beltrami operator; Eigenvalue bounds; Weyl eigenvalue asymptotics; Riesz-means; min-max principle; distance to the boundary; tubular neighborhood
01 Pubblicazione su rivista::01a Articolo in rivista
Weyl-type bounds for Steklov eigenvalues / Provenzano, Luigi; Stubbe, Joachim. - In: JOURNAL OF SPECTRAL THEORY. - ISSN 1664-039X. - 1:9(2019), pp. 349-377. [10.4171/JST/250]
File allegati a questo prodotto
File Dimensione Formato  
Provenzano_Weyltype_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 505.26 kB
Formato Adobe PDF
505.26 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1446692
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 15
social impact