We present upper and lower bounds for Steklov eigenvalues for domains in R^N+1 with C^2 boundary compatible with the Weyl asymptotics. In particular, we obtain sharp upper bounds on Riesz-means and the trace of corresponding Steklov heat kerne. The key result is a comparison of Steklov eigenvalues and Laplacian eigenvalues on the boundary of the domain by applying Pohozaev-type identities on an appropriate tubular neigborhood of the boundary and the min-max principle. Asymptotically sharp bounds then follow from bounds for Riesz-means of Laplacian eigenvalues.
Weyl-type bounds for Steklov eigenvalues / Provenzano, Luigi; Stubbe, Joachim. - In: JOURNAL OF SPECTRAL THEORY. - ISSN 1664-039X. - 1:9(2019), pp. 349-377. [10.4171/JST/250]
Titolo: | Weyl-type bounds for Steklov eigenvalues | |
Autori: | ||
Data di pubblicazione: | 2019 | |
Rivista: | ||
Citazione: | Weyl-type bounds for Steklov eigenvalues / Provenzano, Luigi; Stubbe, Joachim. - In: JOURNAL OF SPECTRAL THEORY. - ISSN 1664-039X. - 1:9(2019), pp. 349-377. [10.4171/JST/250] | |
Handle: | http://hdl.handle.net/11573/1446692 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Provenzano_Weyltype_2019.pdf | Versione editoriale (versione pubblicata con il layout dell'editore) | ![]() | Administrator Richiedi una copia |