We provide a quantitative version of the isoperimetric inequality for the fundamental tone of a biharmonic Neumann problem. Such an inequality has been recently established by Chasman adaptingWeinberger’s argument for the corresponding second order problem. Following a scheme introduced by Brasco and Pratelli for the second order case, we prove that a similar quantitative inequality holds also for the biharmonic operator. We also prove the sharpness of both such an inequality and the corresponding one for the biharmonic Steklov problem.
On the stability of some isoperimetric inequalities for the fundamental tones of free plates / Provenzano, Luigi; Chasman, Laura M.; Buoso, Davide. - In: JOURNAL OF SPECTRAL THEORY. - ISSN 1664-039X. - 8:3(2018), pp. 843-869. [10.4171/JST/214]
Titolo: | On the stability of some isoperimetric inequalities for the fundamental tones of free plates | |
Autori: | ||
Data di pubblicazione: | 2018 | |
Rivista: | ||
Citazione: | On the stability of some isoperimetric inequalities for the fundamental tones of free plates / Provenzano, Luigi; Chasman, Laura M.; Buoso, Davide. - In: JOURNAL OF SPECTRAL THEORY. - ISSN 1664-039X. - 8:3(2018), pp. 843-869. [10.4171/JST/214] | |
Handle: | http://hdl.handle.net/11573/1446690 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Buoso_Stability_2018.pdf | Versione editoriale (versione pubblicata con il layout dell'editore) | ![]() | Administrator Richiedi una copia |