We study the dependence of the eigenvalues of the biharmonic operator subject to Neumann boundary conditions on the Poisson's ratio $sigma$. In particular, we prove that the Neumann eigenvalues are Lipschitz continuous with respect to $sigmain[0,1[$ and that all the Neumann eigenvalues tend to zero as $sigma ightarrow 1^-$. Moreover, we show that the Neumann problem defined by setting $sigma=1$ admits a sequence of positive eigenvalues of finite multiplicity which are not limiting points for the Neumann eigenvalues with $sigmain[0,1[$ as $sigma ightarrow 1^-$, and which coincide with the Dirichlet eigenvalues of the biharmonic operator.
A note on the Neumann eigenvalues of the biharmonic operator / Provenzano, Luigi. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - 41:3(2018), pp. 1005-1012. [10.1002/mma.4063]
A note on the Neumann eigenvalues of the biharmonic operator
Luigi Provenzano
2018
Abstract
We study the dependence of the eigenvalues of the biharmonic operator subject to Neumann boundary conditions on the Poisson's ratio $sigma$. In particular, we prove that the Neumann eigenvalues are Lipschitz continuous with respect to $sigmain[0,1[$ and that all the Neumann eigenvalues tend to zero as $sigma ightarrow 1^-$. Moreover, we show that the Neumann problem defined by setting $sigma=1$ admits a sequence of positive eigenvalues of finite multiplicity which are not limiting points for the Neumann eigenvalues with $sigmain[0,1[$ as $sigma ightarrow 1^-$, and which coincide with the Dirichlet eigenvalues of the biharmonic operator.File | Dimensione | Formato | |
---|---|---|---|
Provenzano_Note_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
238.51 kB
Formato
Adobe PDF
|
238.51 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.