We consider eigenvalue problems for elliptic operators of arbitrary order 2m subject to Neumann boundary conditions on bounded domains of the Euclidean N-dimensional space. We study the dependence of the eigenvalues upon variations of mass density. In particular we discuss the existence and characterization of upper and lower bounds under both the condition that the total mass is fixed and the condition that the $L^{N/2m}$-norm of the density is fixed. We highlight that the interplay between the order of the operator and the space dimension plays a crucial role in the existence of eigenvalue bounds.

Eigenvalues of elliptic operators with density / Provenzano, Luigi; Colbois, Bruno. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 57:2(2018). [10.1007/s00526-018-1307-0]

Eigenvalues of elliptic operators with density

Luigi Provenzano;
2018

Abstract

We consider eigenvalue problems for elliptic operators of arbitrary order 2m subject to Neumann boundary conditions on bounded domains of the Euclidean N-dimensional space. We study the dependence of the eigenvalues upon variations of mass density. In particular we discuss the existence and characterization of upper and lower bounds under both the condition that the total mass is fixed and the condition that the $L^{N/2m}$-norm of the density is fixed. We highlight that the interplay between the order of the operator and the space dimension plays a crucial role in the existence of eigenvalue bounds.
2018
35P20; Primary: 35P15; Secondary: 35J40; Analysis; Applied Mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
Eigenvalues of elliptic operators with density / Provenzano, Luigi; Colbois, Bruno. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 57:2(2018). [10.1007/s00526-018-1307-0]
File allegati a questo prodotto
File Dimensione Formato  
Colbois_Eigenvalues_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 673.07 kB
Formato Adobe PDF
673.07 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1446684
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact