In a smooth bounded domain $Omega$ of $mathbb R^2$ we consider the spectral problem $-Delta u_arepsilon=lambda (arepsilon ) ho_arepsilon u_arepsilon$ with boundary condition $rac{partial u_arepsilon}{partial_ u}=0$. The factor $ ho_arepsilon$ plays the role of a mass density, and it is equal to a constant of order $arepsilon^{-1}$ in an $arepsilon$-neighborhood of the boundary and to a constant of order $arepsilon$ in the rest of $Omega$. We study the asymptotic behavior of the eigenvalues $lambda (arepsilon)$ and the eigenfunctions $u_arepsilon$ as $arepsilon$ tends to zero. We obtain explicit formulas for the first and second terms of the corresponding asymptotic expansions by exploiting the solutions of certain auxiliary boundary value problems.

On vibrating thin membranes with mass concentrated near the boundary: an asymptotic analysis / Provenzano, Luigi; Dalla Riva, Matteo. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 50:3(2018), pp. 2928-2967. [10.1137/17M1118221]

On vibrating thin membranes with mass concentrated near the boundary: an asymptotic analysis

Luigi Provenzano
;
2018

Abstract

In a smooth bounded domain $Omega$ of $mathbb R^2$ we consider the spectral problem $-Delta u_arepsilon=lambda (arepsilon ) ho_arepsilon u_arepsilon$ with boundary condition $rac{partial u_arepsilon}{partial_ u}=0$. The factor $ ho_arepsilon$ plays the role of a mass density, and it is equal to a constant of order $arepsilon^{-1}$ in an $arepsilon$-neighborhood of the boundary and to a constant of order $arepsilon$ in the rest of $Omega$. We study the asymptotic behavior of the eigenvalues $lambda (arepsilon)$ and the eigenfunctions $u_arepsilon$ as $arepsilon$ tends to zero. We obtain explicit formulas for the first and second terms of the corresponding asymptotic expansions by exploiting the solutions of certain auxiliary boundary value problems.
2018
Asymptotic analysis; Eigenvalues; Mass concentration; Spectral analysis; Steklov boundary conditions; Analysis; Computational Mathematics; Applied Mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
On vibrating thin membranes with mass concentrated near the boundary: an asymptotic analysis / Provenzano, Luigi; Dalla Riva, Matteo. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 50:3(2018), pp. 2928-2967. [10.1137/17M1118221]
File allegati a questo prodotto
File Dimensione Formato  
DallaRiva_Vibrating_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 806.47 kB
Formato Adobe PDF
806.47 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1446679
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact