In a smooth bounded domain $Omega$ of $mathbb R^2$ we consider the spectral problem $-Delta u_arepsilon=lambda (arepsilon ) ho_arepsilon u_arepsilon$ with boundary condition $rac{partial u_arepsilon}{partial_ u}=0$. The factor $ ho_arepsilon$ plays the role of a mass density, and it is equal to a constant of order $arepsilon^{-1}$ in an $arepsilon$-neighborhood of the boundary and to a constant of order $arepsilon$ in the rest of $Omega$. We study the asymptotic behavior of the eigenvalues $lambda (arepsilon)$ and the eigenfunctions $u_arepsilon$ as $arepsilon$ tends to zero. We obtain explicit formulas for the first and second terms of the corresponding asymptotic expansions by exploiting the solutions of certain auxiliary boundary value problems.
On vibrating thin membranes with mass concentrated near the boundary: an asymptotic analysis / Provenzano, Luigi; Dalla Riva, Matteo. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 50:3(2018), pp. 2928-2967. [10.1137/17M1118221]
Titolo: | On vibrating thin membranes with mass concentrated near the boundary: an asymptotic analysis | |
Autori: | ||
Data di pubblicazione: | 2018 | |
Rivista: | ||
Citazione: | On vibrating thin membranes with mass concentrated near the boundary: an asymptotic analysis / Provenzano, Luigi; Dalla Riva, Matteo. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 50:3(2018), pp. 2928-2967. [10.1137/17M1118221] | |
Handle: | http://hdl.handle.net/11573/1446679 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
DallaRiva_Vibrating_2018.pdf | Versione editoriale (versione pubblicata con il layout dell'editore) | ![]() | Administrator Richiedi una copia |