We consider the Steklov eigenvalues of the Laplace operator as limiting Neumann eigenvalues in a problem of boundary mass concentration. We discuss the asymptotic behavior of the Neumann eigenvalues in a ball and we deduce that the Steklov eigenvalues minimize the Neumann eigenvalues. Moreover, we study the dependence of the eigenvalues of the Steklov problem upon perturbation of the mass density and show that the Steklov eigenvalues violates a maximum principle in spectral optimization problems.

Viewing the steklov eigenvalues of the laplace operator as critical neumann eigenvalues / Lamberti, PIER DOMENICO; Provenzano, Luigi. - (2015), pp. 171-178. (Intervento presentato al convegno 9th ISAAC Congress, Kraków 2013 tenutosi a Cracovia, Polonia) [10.1007/978-3-319-12577-0_21].

Viewing the steklov eigenvalues of the laplace operator as critical neumann eigenvalues

LAMBERTI, PIER DOMENICO
;
PROVENZANO, LUIGI
2015

Abstract

We consider the Steklov eigenvalues of the Laplace operator as limiting Neumann eigenvalues in a problem of boundary mass concentration. We discuss the asymptotic behavior of the Neumann eigenvalues in a ball and we deduce that the Steklov eigenvalues minimize the Neumann eigenvalues. Moreover, we study the dependence of the eigenvalues of the Steklov problem upon perturbation of the mass density and show that the Steklov eigenvalues violates a maximum principle in spectral optimization problems.
2015
9th ISAAC Congress, Kraków 2013
Steklov boundary conditions; eigenvalues; Optimization
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Viewing the steklov eigenvalues of the laplace operator as critical neumann eigenvalues / Lamberti, PIER DOMENICO; Provenzano, Luigi. - (2015), pp. 171-178. (Intervento presentato al convegno 9th ISAAC Congress, Kraków 2013 tenutosi a Cracovia, Polonia) [10.1007/978-3-319-12577-0_21].
File allegati a questo prodotto
File Dimensione Formato  
Lamberti_Viewing_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 220.08 kB
Formato Adobe PDF
220.08 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1446678
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? ND
social impact