We consider the Steklov eigenvalues of the Laplace operator as limiting Neumann eigenvalues in a problem of boundary mass concentration. We discuss the asymptotic behavior of the Neumann eigenvalues in a ball and we deduce that the Steklov eigenvalues minimize the Neumann eigenvalues. Moreover, we study the dependence of the eigenvalues of the Steklov problem upon perturbation of the mass density and show that the Steklov eigenvalues violates a maximum principle in spectral optimization problems.
Viewing the steklov eigenvalues of the laplace operator as critical neumann eigenvalues / Lamberti, PIER DOMENICO; Provenzano, Luigi. - (2015), pp. 171-178. (Intervento presentato al convegno 9th ISAAC Congress, Kraków 2013 tenutosi a Cracovia, Polonia) [10.1007/978-3-319-12577-0_21].
Viewing the steklov eigenvalues of the laplace operator as critical neumann eigenvalues
LAMBERTI, PIER DOMENICO
;PROVENZANO, LUIGI
2015
Abstract
We consider the Steklov eigenvalues of the Laplace operator as limiting Neumann eigenvalues in a problem of boundary mass concentration. We discuss the asymptotic behavior of the Neumann eigenvalues in a ball and we deduce that the Steklov eigenvalues minimize the Neumann eigenvalues. Moreover, we study the dependence of the eigenvalues of the Steklov problem upon perturbation of the mass density and show that the Steklov eigenvalues violates a maximum principle in spectral optimization problems.File | Dimensione | Formato | |
---|---|---|---|
Lamberti_Viewing_2015.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
220.08 kB
Formato
Adobe PDF
|
220.08 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.