We consider an eigenvalue problem for the biharmonic operator with Steklov-type boundary conditions. We obtain it as a limiting Neumann problem for the biharmonic operator in a process of mass concentration at the boundary. We study the dependence of the spectrum upon the domain. We show analyticity of the symmetric functions of the eigenvalues under isovolumetric perturbations and prove that balls are critical points for such functions under measure constraint. Moreover, we show that the ball is a maximizer for the first positive eigenvalue among those domains with a prescribed fixed measure.

On the eigenvalues of a biharmonic Steklov problem / Provenzano, Luigi; Buoso, Davide. - (2015). (Intervento presentato al convegno Integral Methods in Science and Engineering tenutosi a Karlsruhe (Germany)) [10.1007/978-3-319-16727-5_7].

On the eigenvalues of a biharmonic Steklov problem

Luigi Provenzano
;
2015

Abstract

We consider an eigenvalue problem for the biharmonic operator with Steklov-type boundary conditions. We obtain it as a limiting Neumann problem for the biharmonic operator in a process of mass concentration at the boundary. We study the dependence of the spectrum upon the domain. We show analyticity of the symmetric functions of the eigenvalues under isovolumetric perturbations and prove that balls are critical points for such functions under measure constraint. Moreover, we show that the ball is a maximizer for the first positive eigenvalue among those domains with a prescribed fixed measure.
2015
Integral Methods in Science and Engineering
biharmonic operator; steklov boundary conditions; eigenvalues; isovolumetric perturbations.
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
On the eigenvalues of a biharmonic Steklov problem / Provenzano, Luigi; Buoso, Davide. - (2015). (Intervento presentato al convegno Integral Methods in Science and Engineering tenutosi a Karlsruhe (Germany)) [10.1007/978-3-319-16727-5_7].
File allegati a questo prodotto
File Dimensione Formato  
Provenzano_Eigenvalues_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 4.99 MB
Formato Adobe PDF
4.99 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1446674
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact