Composite materials are widely employed in various industries, such as aerospace, automobile, and sports equipment, owing to their lightweight and strong structure in comparison with conventional materials. Laser material processing is a rapid technique for performing the various processes on composite materials. In particular, laser forming is a flexible and reliable approach for shaping fiber-metal laminates (FMLs), which are widely used in the aerospace industry due to several advantages, such as high strength and light weight. In this study, a prediction model was developed for determining the optimal laser parameters (power and speed) when forming FML composites. Artificial neural networks (ANNs) were applied to estimate the process outputs (temperature and bending angle) as a result of the modeling process. For this purpose, several ANN models were developed using various strategies. Finally, the achieved results demonstrated the advantage of the models for predicting the optimal operational parameters.
Prediction model for determining the optimum operational parameters in laser forming of fiber-reinforced composites / Gisario, A.; Mehrpouya, M.; Rahimzadeh, A.; De Bartolomeis, A.; Barletta, M.. - In: ADVANCES IN MANUFACTURING. - ISSN 2095-3127. - 8:2(2020), pp. 242-251. [10.1007/s40436-020-00304-3]
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Prediction model for determining the optimum operational parameters in laser forming of fiber-reinforced composites | |
Autori: | GISARIO, ANNAMARIA (Primo) | |
Data di pubblicazione: | 2020 | |
Rivista: | ||
Citazione: | Prediction model for determining the optimum operational parameters in laser forming of fiber-reinforced composites / Gisario, A.; Mehrpouya, M.; Rahimzadeh, A.; De Bartolomeis, A.; Barletta, M.. - In: ADVANCES IN MANUFACTURING. - ISSN 2095-3127. - 8:2(2020), pp. 242-251. [10.1007/s40436-020-00304-3] | |
Handle: | http://hdl.handle.net/11573/1446274 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Gisario_Prediction-Model_2020.pdf | Versione editoriale (versione pubblicata con il layout dell'editore) | Tutti i diritti riservati (All rights reserved) | Administrator Richiedi una copia |