The zona pellucida (ZP) is a unique extracellular coat surrounding the maturing oocyte, during ovulation, fertilization, and early embryo development. It is formed by three/four glycoproteins. Ultrastructural data obtained with transmission (TEM) and scanning electron microscopy (SEM) were compared with molecular data on the glycoproteins network from ovulation to blastocyst formation. Molecular models are quite different to the morphology obtained with TEM, which shows a microfibrillar architecture, or with SEM, which shows a spongy or smooth surface. The saponinruthenium red-osmium tetroxide- thiocarbohydrazide technique allows to show the ZP real microfilamentous structure and the related functional changes. These results support an ultrastructural supramolecular model, more similar and comparable to molecular models related with the glycoprotein network. A detailed mapping of single mammalian ZP proteins and their relationship within the supramolecular architecture of the zona matrix would clearly supply insights into the molecular basis of sperm-egg recognition. Differences in ZP glycoproteins among mammals do not affect structural morphology; further studies are needed to clarify the relationships between ultrastructural and molecular organizations.
Structural changes of the zona pellucida during fertilization and embryo development / Familiari, Giuseppe; HEYN SALINAS, Rosemari Brigitte; Relucenti, Michela; H., Sathananthan. - In: FRONTIERS IN BIOSCIENCE. - ISSN 1093-9946. - 13:17(2008), pp. 6730-6751. [10.2741/3185]
Structural changes of the zona pellucida during fertilization and embryo development
FAMILIARI, Giuseppe;HEYN SALINAS, Rosemari Brigitte;RELUCENTI, Michela;
2008
Abstract
The zona pellucida (ZP) is a unique extracellular coat surrounding the maturing oocyte, during ovulation, fertilization, and early embryo development. It is formed by three/four glycoproteins. Ultrastructural data obtained with transmission (TEM) and scanning electron microscopy (SEM) were compared with molecular data on the glycoproteins network from ovulation to blastocyst formation. Molecular models are quite different to the morphology obtained with TEM, which shows a microfibrillar architecture, or with SEM, which shows a spongy or smooth surface. The saponinruthenium red-osmium tetroxide- thiocarbohydrazide technique allows to show the ZP real microfilamentous structure and the related functional changes. These results support an ultrastructural supramolecular model, more similar and comparable to molecular models related with the glycoprotein network. A detailed mapping of single mammalian ZP proteins and their relationship within the supramolecular architecture of the zona matrix would clearly supply insights into the molecular basis of sperm-egg recognition. Differences in ZP glycoproteins among mammals do not affect structural morphology; further studies are needed to clarify the relationships between ultrastructural and molecular organizations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.