We consider the nonlinear eigenvalue problem, with Dirichlet boundary condition, for the very degenerate elliptic operator P1+ mapping a function u to the maximum eigenvalue of its Hessian matrix. The aim is to show that, at least for square type domains having fixed volume, the symmetry of the domain maximizes the principal eigenvalue, contrary to what happens for the Laplacian.
Towards a reversed Faber–Krahn inequality for the truncated Laplacian / Birindelli, I.; Galise, G.; Ishii, H.. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - 36:3(2020), pp. 723-740. [10.4171/rmi/1146]
Towards a reversed Faber–Krahn inequality for the truncated Laplacian
Birindelli I.
;Galise G.;Ishii H.
2020
Abstract
We consider the nonlinear eigenvalue problem, with Dirichlet boundary condition, for the very degenerate elliptic operator P1+ mapping a function u to the maximum eigenvalue of its Hessian matrix. The aim is to show that, at least for square type domains having fixed volume, the symmetry of the domain maximizes the principal eigenvalue, contrary to what happens for the Laplacian.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Birindelli_Towards-a-reversed_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
238.57 kB
Formato
Adobe PDF
|
238.57 kB | Adobe PDF | Contatta l'autore |
Birindelli_preprint_Towards-a-reversed_2020.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
217.32 kB
Formato
Unknown
|
217.32 kB | Unknown |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.