The operation of Photovoltaic (PV) system mainly rely on appropriate modeling of solar cells and optimum approximation of parameters associated with them. Recently, various hybrid, numerical and analytical techniques were proposed to extract optimal parameters of PV cell. This paper presents an efficient approach, A Simulated Annealing Inertia Weight Particle Swarm Optimization (SAIW-PSO) for optimal estimation of PV parameters for double and single diode models. In addition, fitness indicator is guided using the Newton Raphson Method (NRM) that supports SAIW -PSO to explore the optimal solution. The premature convergence problem of typical PSO is resolved by the proposed framework. The strength of proposed approach is validated under standard test conditions (STC) on RTC France Silicon Solar cell. The SAIW-PSO is capable to explore optimum solution in smaller number of iterations and less computation time. The obtained results clearly depict that the proposed framework is fast, efficient and much accurate for PV cells parameters approximation.

Optimal parameter estimation of solar cell using simulated annealing inertia weight particle swarm optimization (SAIW-PSO) / Kiani, A. T.; Nadeem, M. F.; Ahmed, A.; Sajjad, I. A.; Haris, M. S.; Martirano, L.. - (2020), pp. 1-6. (Intervento presentato al convegno 2020 IEEE International conference on environment and electrical engineering and 2020 IEEE industrial and commercial power systems Europe, EEEIC / I and CPS Europe 2020 tenutosi a Madrid; Spain) [10.1109/EEEIC/ICPSEurope49358.2020.9160531].

Optimal parameter estimation of solar cell using simulated annealing inertia weight particle swarm optimization (SAIW-PSO)

Martirano L.
2020

Abstract

The operation of Photovoltaic (PV) system mainly rely on appropriate modeling of solar cells and optimum approximation of parameters associated with them. Recently, various hybrid, numerical and analytical techniques were proposed to extract optimal parameters of PV cell. This paper presents an efficient approach, A Simulated Annealing Inertia Weight Particle Swarm Optimization (SAIW-PSO) for optimal estimation of PV parameters for double and single diode models. In addition, fitness indicator is guided using the Newton Raphson Method (NRM) that supports SAIW -PSO to explore the optimal solution. The premature convergence problem of typical PSO is resolved by the proposed framework. The strength of proposed approach is validated under standard test conditions (STC) on RTC France Silicon Solar cell. The SAIW-PSO is capable to explore optimum solution in smaller number of iterations and less computation time. The obtained results clearly depict that the proposed framework is fast, efficient and much accurate for PV cells parameters approximation.
2020
2020 IEEE International conference on environment and electrical engineering and 2020 IEEE industrial and commercial power systems Europe, EEEIC / I and CPS Europe 2020
double and single diode models; parameter estimation; photovoltaic; Root mean square error; Simulated Annealing inertia weight particle swarm optimization
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Optimal parameter estimation of solar cell using simulated annealing inertia weight particle swarm optimization (SAIW-PSO) / Kiani, A. T.; Nadeem, M. F.; Ahmed, A.; Sajjad, I. A.; Haris, M. S.; Martirano, L.. - (2020), pp. 1-6. (Intervento presentato al convegno 2020 IEEE International conference on environment and electrical engineering and 2020 IEEE industrial and commercial power systems Europe, EEEIC / I and CPS Europe 2020 tenutosi a Madrid; Spain) [10.1109/EEEIC/ICPSEurope49358.2020.9160531].
File allegati a questo prodotto
File Dimensione Formato  
Kiani_Optimal Parameter_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 364.39 kB
Formato Adobe PDF
364.39 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1441251
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 4
social impact