The evolution of the building automation and control systems (BACS) systems presents the challenge of defining new concepts for a clear and unambiguous definition of functionalities. While for traditional electrical systems it is possible to unequivocally infer functionalities from wiring diagrams and component characteristics, in BACS systems this may not be so immediate. A comprehensive description of the functionalities of such systems may require additional descriptors, so as to also consider logical connections among devices, as well as their configurations. Designers of BACS systems must therefore become familiar with software that may be used to properly express the logic functionalities of the system, and be able to provide system integrators with pertinent details for the hardware settings. In BACS, a logical layer (setting and addressing) is superimposed on a physical layer (wiring). The logical layer determines the functionality of the system. Software should allow the implementation of networks parameters with any communication standards (e.g. KNX, proprietary systems, etc.) and be transparent to the designer. This paper critically reviews the state-of-the-art in BACS, and examines major parameters that may be universally applicable to both KNX systems, as well as to proprietary systems with gateway (e.g., Xiaomi, Google Home, etc.). BACS is one of the most important enabling technologies for the creation of microgrids for smart buildings and energy communities.
Building automation and control systems (BACS): a review / Martirano, L.; Mitolo, M.. - (2020), pp. 1-8. (Intervento presentato al convegno 2020 IEEE International conference on environment and electrical engineering and 2020 IEEE industrial and commercial power systems Europe, EEEIC / I and CPS Europe 2020 tenutosi a Madrid; Spain) [10.1109/EEEIC/ICPSEurope49358.2020.9160662].
Building automation and control systems (BACS): a review
Martirano L.
;
2020
Abstract
The evolution of the building automation and control systems (BACS) systems presents the challenge of defining new concepts for a clear and unambiguous definition of functionalities. While for traditional electrical systems it is possible to unequivocally infer functionalities from wiring diagrams and component characteristics, in BACS systems this may not be so immediate. A comprehensive description of the functionalities of such systems may require additional descriptors, so as to also consider logical connections among devices, as well as their configurations. Designers of BACS systems must therefore become familiar with software that may be used to properly express the logic functionalities of the system, and be able to provide system integrators with pertinent details for the hardware settings. In BACS, a logical layer (setting and addressing) is superimposed on a physical layer (wiring). The logical layer determines the functionality of the system. Software should allow the implementation of networks parameters with any communication standards (e.g. KNX, proprietary systems, etc.) and be transparent to the designer. This paper critically reviews the state-of-the-art in BACS, and examines major parameters that may be universally applicable to both KNX systems, as well as to proprietary systems with gateway (e.g., Xiaomi, Google Home, etc.). BACS is one of the most important enabling technologies for the creation of microgrids for smart buildings and energy communities.File | Dimensione | Formato | |
---|---|---|---|
Martirano_Building automation_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.7 MB
Formato
Adobe PDF
|
1.7 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.