The core of the paper consists of the illustration of a method for seismic reliability analysis of non-linear structures. The method, which is a development over a recent previous proposal, is quite comprehensive in scope since it includes consideration of randomness in the input, in the mechanical properties of the structure and in the limit-state, or capacity, conditions. Essentially, the problem is formulated as the out-crossing of the response process out of a (scalar) safe threshold, and this problem is solved by time-invariant FORM methods. An application to an idealised five-storey building demonstrates the salient theoretical and computational features of the method. The new approach is presented in a broader framework, which involves a discussion on present trends and capabilities in the area of probabilistic seismic design. For the sake of this discussion, two approaches just appeared in the literature are outlined, which are less demanding from a theoretical standpoint, and hence closer to engineering practice, but also less general in scope. It is argued that their introduction on code-assisted design would be feasible immediately with obvious advantages, while approaches of more rigorous nature would be given some more time to mature and to become more accessible to professional use.
Methods of seismic risk analysis: State-of-the-Art versus advanced State-of-the-Practice / Franchin, Paolo; Lupoi, Alessio; Pinto, P. E.. - In: JOURNAL OF EARTHQUAKE ENGINEERING. - ISSN 1363-2469. - STAMPA. - (2002), pp. 131-155. [10.1142/S136324690200067X]
Methods of seismic risk analysis: State-of-the-Art versus advanced State-of-the-Practice
FRANCHIN, Paolo;LUPOI, ALESSIO;
2002
Abstract
The core of the paper consists of the illustration of a method for seismic reliability analysis of non-linear structures. The method, which is a development over a recent previous proposal, is quite comprehensive in scope since it includes consideration of randomness in the input, in the mechanical properties of the structure and in the limit-state, or capacity, conditions. Essentially, the problem is formulated as the out-crossing of the response process out of a (scalar) safe threshold, and this problem is solved by time-invariant FORM methods. An application to an idealised five-storey building demonstrates the salient theoretical and computational features of the method. The new approach is presented in a broader framework, which involves a discussion on present trends and capabilities in the area of probabilistic seismic design. For the sake of this discussion, two approaches just appeared in the literature are outlined, which are less demanding from a theoretical standpoint, and hence closer to engineering practice, but also less general in scope. It is argued that their introduction on code-assisted design would be feasible immediately with obvious advantages, while approaches of more rigorous nature would be given some more time to mature and to become more accessible to professional use.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.