Under the Solvency II Directive, insurance and reinsurance undertakings are required to perform continuous monitoring of risks and market consistent valuation of assets and liabilities. Solvency II application is particularly demanding, both theoretically and under the computational point of view. At present, any technique able to improve on accuracy or to reduce computing time is highly desirable. This works reports initial results on the design of a Deep Learning Network, aimed to reduce computing time by avoiding the standard full nested Monte Carlo approach.

Tuning a Deep Learning Network for Solvency II: Preliminary Results / Fiore, Ugo; Marino, Zelda; Passalacqua, Luca; Perla, Francesca; Scognamiglio, Salvatore; Zanetti, Paolo. - (2018), pp. 351-355. (Intervento presentato al convegno International conference on Mathematical and Statistical Methods for Actuarial Sciences and Finance (MAF) tenutosi a Madrid) [10.1007/978-3-319-89824-7_63].

Tuning a Deep Learning Network for Solvency II: Preliminary Results

Passalacqua, Luca;Perla, Francesca;
2018

Abstract

Under the Solvency II Directive, insurance and reinsurance undertakings are required to perform continuous monitoring of risks and market consistent valuation of assets and liabilities. Solvency II application is particularly demanding, both theoretically and under the computational point of view. At present, any technique able to improve on accuracy or to reduce computing time is highly desirable. This works reports initial results on the design of a Deep Learning Network, aimed to reduce computing time by avoiding the standard full nested Monte Carlo approach.
2018
International conference on Mathematical and Statistical Methods for Actuarial Sciences and Finance (MAF)
solvency II, deep learning, Monte Carlo, profit insurance policies
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Tuning a Deep Learning Network for Solvency II: Preliminary Results / Fiore, Ugo; Marino, Zelda; Passalacqua, Luca; Perla, Francesca; Scognamiglio, Salvatore; Zanetti, Paolo. - (2018), pp. 351-355. (Intervento presentato al convegno International conference on Mathematical and Statistical Methods for Actuarial Sciences and Finance (MAF) tenutosi a Madrid) [10.1007/978-3-319-89824-7_63].
File allegati a questo prodotto
File Dimensione Formato  
Fiore_tuning-a-deep_2018.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 73.36 kB
Formato Adobe PDF
73.36 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1437974
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact