We used Affymetrix 6.0 GeneChip SNP arrays to characterize copy number variations (CNVs) in a cohort of 70 patients previously characterized on lower-density oligonucleotide arrays affected by idiopathic mental retardation and dysmorphic features. The SNP array platform includes B900 000 SNP probes and 900 000 non-SNP oligonucleotide probes at an average distance of 0.7 Kb, which facilitates coverage of the whole genome, including coding and noncoding regions. The high density of probes is critical for detecting small CNVs, but it can lead to data interpretation problems. To reduce the number of false positives, parameters were set to consider only imbalances 475 Kb encompassing at least 80 probe sets. The higher resolution of the SNP array platform confirmed the increased ability to detect small CNVs, although more than 80% of these CNVs overlapped to copy number ‘neutral’ polymorphism regions and 4.4% of them did not contain known genes. In our cohort of 70 patients, of the 51 previously evaluated as ‘normal’ on the Agilent 44K array, the SNP array platform disclosed six additional CNV changes, including three in three patients, which may be pathogenic. This suggests that about 6% of individuals classified as ‘normal’ using the lower-density oligonucleotide array could be found to be affected by a genomic disorder when evaluated with the higher-density microarray platforms.

We used Affymetrix 6.0 GeneChip SNP arrays to characterize copy number variations (CNVs) in a cohort of 70 patients previously characterized on lower-density oligonucleotide arrays affected by idiopathic mental retardation and dysmorphic features. The SNP array platform includes similar to 900 000 SNP probes and 900 000 non-SNP oligonucleotide probes at an average distance of 0.7 Kb, which facilitates coverage of the whole genome, including coding and noncoding regions. The high density of probes is critical for detecting small CNVs, but it can lead to data interpretation problems. To reduce the number of false positives, parameters were set to consider only imbalances 475 Kb encompassing at least 80 probe sets. The higher resolution of the SNP array platform confirmed the increased ability to detect small CNVs, although more than 80% of these CNVs overlapped to copy number 'neutral' polymorphism regions and 4.4% of them did not contain known genes. In our cohort of 70 patients, of the 51 previously evaluated as 'normal' on the Agilent 44K array, the SNP array platform disclosed six additional CNV changes, including three in three patients, which may be pathogenic. This suggests that about 6% of individuals classified as 'normal' using the lower-density oligonucleotide array could be found to be affected by a genomic disorder when evaluated with the higher-density microarray platforms. European Journal of Human Genetics (2010) 18, 178-185; doi: 10.1038/ejhg.2009.154; published online 7 October 2009

High-resolution SNP arrays in mental retardation diagnostics: how much do we gain? / Laura, Bernardini; Viola, Alesi; Sara, Loddo; Antonio, Novelli; Bottillo, Irene; Agatino, Battaglia; Maria Cristina Digilio, ; Giuseppe, Zampino; Adam, Ertel; Fortina, Paolo; Saul, Surrey; Bruno, Dallapiccola. - In: EUROPEAN JOURNAL OF HUMAN GENETICS. - ISSN 1018-4813. - STAMPA. - 18:2(2010), pp. 178-185. [10.1038/ejhg.2009.154]

High-resolution SNP arrays in mental retardation diagnostics: how much do we gain?

Irene Bottillo;FORTINA, PAOLO;
2010

Abstract

We used Affymetrix 6.0 GeneChip SNP arrays to characterize copy number variations (CNVs) in a cohort of 70 patients previously characterized on lower-density oligonucleotide arrays affected by idiopathic mental retardation and dysmorphic features. The SNP array platform includes B900 000 SNP probes and 900 000 non-SNP oligonucleotide probes at an average distance of 0.7 Kb, which facilitates coverage of the whole genome, including coding and noncoding regions. The high density of probes is critical for detecting small CNVs, but it can lead to data interpretation problems. To reduce the number of false positives, parameters were set to consider only imbalances 475 Kb encompassing at least 80 probe sets. The higher resolution of the SNP array platform confirmed the increased ability to detect small CNVs, although more than 80% of these CNVs overlapped to copy number ‘neutral’ polymorphism regions and 4.4% of them did not contain known genes. In our cohort of 70 patients, of the 51 previously evaluated as ‘normal’ on the Agilent 44K array, the SNP array platform disclosed six additional CNV changes, including three in three patients, which may be pathogenic. This suggests that about 6% of individuals classified as ‘normal’ using the lower-density oligonucleotide array could be found to be affected by a genomic disorder when evaluated with the higher-density microarray platforms.
2010
We used Affymetrix 6.0 GeneChip SNP arrays to characterize copy number variations (CNVs) in a cohort of 70 patients previously characterized on lower-density oligonucleotide arrays affected by idiopathic mental retardation and dysmorphic features. The SNP array platform includes similar to 900 000 SNP probes and 900 000 non-SNP oligonucleotide probes at an average distance of 0.7 Kb, which facilitates coverage of the whole genome, including coding and noncoding regions. The high density of probes is critical for detecting small CNVs, but it can lead to data interpretation problems. To reduce the number of false positives, parameters were set to consider only imbalances 475 Kb encompassing at least 80 probe sets. The higher resolution of the SNP array platform confirmed the increased ability to detect small CNVs, although more than 80% of these CNVs overlapped to copy number 'neutral' polymorphism regions and 4.4% of them did not contain known genes. In our cohort of 70 patients, of the 51 previously evaluated as 'normal' on the Agilent 44K array, the SNP array platform disclosed six additional CNV changes, including three in three patients, which may be pathogenic. This suggests that about 6% of individuals classified as 'normal' using the lower-density oligonucleotide array could be found to be affected by a genomic disorder when evaluated with the higher-density microarray platforms. European Journal of Human Genetics (2010) 18, 178-185; doi: 10.1038/ejhg.2009.154; published online 7 October 2009
mental retardation; snp array; pathogenic cnvs; genechip 6.0
01 Pubblicazione su rivista::01a Articolo in rivista
High-resolution SNP arrays in mental retardation diagnostics: how much do we gain? / Laura, Bernardini; Viola, Alesi; Sara, Loddo; Antonio, Novelli; Bottillo, Irene; Agatino, Battaglia; Maria Cristina Digilio, ; Giuseppe, Zampino; Adam, Ertel; Fortina, Paolo; Saul, Surrey; Bruno, Dallapiccola. - In: EUROPEAN JOURNAL OF HUMAN GENETICS. - ISSN 1018-4813. - STAMPA. - 18:2(2010), pp. 178-185. [10.1038/ejhg.2009.154]
File allegati a questo prodotto
File Dimensione Formato  
Bernardini_high-resolution_2010.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 708.83 kB
Formato Adobe PDF
708.83 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/143604
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 24
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 40
social impact