Earth Pressure Balance (EPB) Tunnel Boring Machines (TBM) are currently the most widely used machines to perform tunnel excavation, particularly in urban areas. This technology involves the injection of chemicals as conditioning mixtures, which commonly raises concerns limiting the reuse of soils after excavation. This study deals with the prospect of a simplified, rapid and replicable methodology for the evaluation of the biodegradability of these conditioning mixtures. For this purpose, the biodegradation of three commercial conditioning mixtures was investigated in closed bottle tests by investigating the effect of different mixtures dosages and two different inocula (soil humus and Bacillus Clausii). While using soil humus as inoculum, a comparative study of biodegradation of the three investigated mixtures was successfully carried out; in the case of Bacillus Clausii, it was not possible to make a comparison between the different formulations in a short time. The adoption of soil humus satisfied only the criteria of rapid test, while the Bacillus Clausii, as specific inoculum, can meet the criteria of replicable results. For this reason, in the second part of this experimental study, a rapid and replicable procedure was proposed and validated. A kinetic study of organic carbon removal was also carried out.

A rapid experimental procedure to assess environmental compatibility of conditioning mixtures used in TBM-EPB technology / Bavasso, I.; Vilardi, G.; Sebastiani, D.; Di Giulio, A.; Di Felice, M.; Di Biase, A.; Miliziano, S.; Di Palma, L.. - In: APPLIED SCIENCES. - ISSN 2076-3417. - 10:12(2020). [10.3390/APP10124138]

A rapid experimental procedure to assess environmental compatibility of conditioning mixtures used in TBM-EPB technology

Bavasso I.;Vilardi G.;Sebastiani D.;Di Giulio A.;Di Biase A.;Miliziano S.;Di Palma L.
2020

Abstract

Earth Pressure Balance (EPB) Tunnel Boring Machines (TBM) are currently the most widely used machines to perform tunnel excavation, particularly in urban areas. This technology involves the injection of chemicals as conditioning mixtures, which commonly raises concerns limiting the reuse of soils after excavation. This study deals with the prospect of a simplified, rapid and replicable methodology for the evaluation of the biodegradability of these conditioning mixtures. For this purpose, the biodegradation of three commercial conditioning mixtures was investigated in closed bottle tests by investigating the effect of different mixtures dosages and two different inocula (soil humus and Bacillus Clausii). While using soil humus as inoculum, a comparative study of biodegradation of the three investigated mixtures was successfully carried out; in the case of Bacillus Clausii, it was not possible to make a comparison between the different formulations in a short time. The adoption of soil humus satisfied only the criteria of rapid test, while the Bacillus Clausii, as specific inoculum, can meet the criteria of replicable results. For this reason, in the second part of this experimental study, a rapid and replicable procedure was proposed and validated. A kinetic study of organic carbon removal was also carried out.
2020
Anionic-surfactant; Biodegradation; Earth pressure balance; Soil conditioning agent; Tunnel boring machines
01 Pubblicazione su rivista::01a Articolo in rivista
A rapid experimental procedure to assess environmental compatibility of conditioning mixtures used in TBM-EPB technology / Bavasso, I.; Vilardi, G.; Sebastiani, D.; Di Giulio, A.; Di Felice, M.; Di Biase, A.; Miliziano, S.; Di Palma, L.. - In: APPLIED SCIENCES. - ISSN 2076-3417. - 10:12(2020). [10.3390/APP10124138]
File allegati a questo prodotto
File Dimensione Formato  
Bavasso_ARapid_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1435119
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact