Background: A relevant problem in drug design is the comparison and recognition of protein binding sites. Binding sites recognition is generally based on geometry often combined with physico-chemical properties of the site since the conformation, size and chemical composition of the protein surface are all relevant for the interaction with a specific ligand. Several matching strategies have been designed for the recognition of protein-ligand binding sites and of protein-protein interfaces but the problem cannot be considered solved.Results: In this paper we propose a new method for local structural alignment of protein surfaces based on continuous global optimization techniques. Given the three-dimensional structures of two proteins, the method finds the isometric transformation (rotation plus translation) that best superimposes active regions of two structures. We draw our inspiration from the well-known Iterative Closest Point (ICP) method for three-dimensional (3D) shapes registration. Our main contribution is in the adoption of a controlled random search as a more efficient global optimization approach along with a new dissimilarity measure. The reported computational experience and comparison show viability of the proposed approach.Conclusions: Our method performs well to detect similarity in binding sites when this in fact exists. In the future we plan to do a more comprehensive evaluation of the method by considering large datasets of non-redundant proteins and applying a clustering technique to the results of all comparisons to classify binding sites. © 2010 Bertolazzi et al; licensee BioMed Central Ltd.

A global optimization algorithm for protein surface alignment / Bertolazzi, P.; Guerra, C.; Liuzzi, G.. - In: BMC BIOINFORMATICS. - ISSN 1471-2105. - 11:1(2010), p. 488. [10.1186/1471-2105-11-488]

A global optimization algorithm for protein surface alignment

Guerra C.;Liuzzi G.
2010

Abstract

Background: A relevant problem in drug design is the comparison and recognition of protein binding sites. Binding sites recognition is generally based on geometry often combined with physico-chemical properties of the site since the conformation, size and chemical composition of the protein surface are all relevant for the interaction with a specific ligand. Several matching strategies have been designed for the recognition of protein-ligand binding sites and of protein-protein interfaces but the problem cannot be considered solved.Results: In this paper we propose a new method for local structural alignment of protein surfaces based on continuous global optimization techniques. Given the three-dimensional structures of two proteins, the method finds the isometric transformation (rotation plus translation) that best superimposes active regions of two structures. We draw our inspiration from the well-known Iterative Closest Point (ICP) method for three-dimensional (3D) shapes registration. Our main contribution is in the adoption of a controlled random search as a more efficient global optimization approach along with a new dissimilarity measure. The reported computational experience and comparison show viability of the proposed approach.Conclusions: Our method performs well to detect similarity in binding sites when this in fact exists. In the future we plan to do a more comprehensive evaluation of the method by considering large datasets of non-redundant proteins and applying a clustering technique to the results of all comparisons to classify binding sites. © 2010 Bertolazzi et al; licensee BioMed Central Ltd.
2010
Binding Sites; Computational Biology; Databases, Protein; Drug Design; Protein Conformation; Proteins; Surface Properties; Algorithms
01 Pubblicazione su rivista::01a Articolo in rivista
A global optimization algorithm for protein surface alignment / Bertolazzi, P.; Guerra, C.; Liuzzi, G.. - In: BMC BIOINFORMATICS. - ISSN 1471-2105. - 11:1(2010), p. 488. [10.1186/1471-2105-11-488]
File allegati a questo prodotto
File Dimensione Formato  
VE_2010_11573-1434036.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.96 MB
Formato Adobe PDF
4.96 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1434036
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact