In this paper we consider the problem of minimizing a nonlinear function using partial derivative knowledge. Namely, the objective function is such that its derivatives with respect to a pre-specified block of variables cannot be computed. To solve the problem we propose a block decomposition method that takes advantage of both derivative-free and derivative-based iterations to account for the features of the objective function. Under standard assumptions, we manage to prove global convergence of the method to stationary points of the problem. © 2010 Springer-Verlag.

A decomposition algorithm for unconstrained optimization problems with partial derivative information / Liuzzi, G.; Risi, A.. - In: OPTIMIZATION LETTERS. - ISSN 1862-4472. - 6:3(2012), pp. 437-450. [10.1007/s11590-010-0270-2]

A decomposition algorithm for unconstrained optimization problems with partial derivative information

Liuzzi G.;
2012

Abstract

In this paper we consider the problem of minimizing a nonlinear function using partial derivative knowledge. Namely, the objective function is such that its derivatives with respect to a pre-specified block of variables cannot be computed. To solve the problem we propose a block decomposition method that takes advantage of both derivative-free and derivative-based iterations to account for the features of the objective function. Under standard assumptions, we manage to prove global convergence of the method to stationary points of the problem. © 2010 Springer-Verlag.
2012
Block decomposition method; Derivative-free iteration; Unconstrained optimization
01 Pubblicazione su rivista::01a Articolo in rivista
A decomposition algorithm for unconstrained optimization problems with partial derivative information / Liuzzi, G.; Risi, A.. - In: OPTIMIZATION LETTERS. - ISSN 1862-4472. - 6:3(2012), pp. 437-450. [10.1007/s11590-010-0270-2]
File allegati a questo prodotto
File Dimensione Formato  
VE_2012_11573-1434031.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 301 kB
Formato Adobe PDF
301 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1434031
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact