A detailed structural investigation of the semiconductor-to-metal transition (SMT) in vanadium dioxide thin films deposited on sapphire substrates by pulsed laser deposition was performed by in situ temperature-dependent X-ray diffraction (XRD) measurements. The structural results are correlated with those of infrared radiometry measurements in the SWIR (2.5-5 μm) and LWIR (8-10.6 μm) spectral ranges. The main results indicate a good agreement between XRD and optical analysis, therefore demonstrating that the structural transition from monoclinic to tetragonal phases is the dominating mechanism for controlling the global properties of the SMT transition. The picture that emerges is a SMT transition in which the two phases (monoclinic and tetragonal) coexist during the transition. Finally, the thermal hysteresis, measured for thin films with different thickness, showed a clear dependence of the transition temperature and the width of the hysteresis loop on the film thickness and on the size of the crystallites.

Correlation between in situ structural and optical characterization of the semiconductor-to-metal phase transition of VO2 thin films on sapphire / Cesca, T.; Scian, C.; Petronijevic, E.; Leahu, G.; Li Voti, R.; Cesarini, G.; Macaluso, R.; Mosca, M.; Sibilia, C.; Mattei, G.. - In: NANOSCALE. - ISSN 2040-3364. - 12:2(2020), pp. 851-863. [10.1039/c9nr09024j]

Correlation between in situ structural and optical characterization of the semiconductor-to-metal phase transition of VO2 thin films on sapphire

Petronijevic E.;Leahu G.;Li Voti R.;Cesarini G.;Sibilia C.;
2020

Abstract

A detailed structural investigation of the semiconductor-to-metal transition (SMT) in vanadium dioxide thin films deposited on sapphire substrates by pulsed laser deposition was performed by in situ temperature-dependent X-ray diffraction (XRD) measurements. The structural results are correlated with those of infrared radiometry measurements in the SWIR (2.5-5 μm) and LWIR (8-10.6 μm) spectral ranges. The main results indicate a good agreement between XRD and optical analysis, therefore demonstrating that the structural transition from monoclinic to tetragonal phases is the dominating mechanism for controlling the global properties of the SMT transition. The picture that emerges is a SMT transition in which the two phases (monoclinic and tetragonal) coexist during the transition. Finally, the thermal hysteresis, measured for thin films with different thickness, showed a clear dependence of the transition temperature and the width of the hysteresis loop on the film thickness and on the size of the crystallites.
2020
phase change material; VO2
01 Pubblicazione su rivista::01a Articolo in rivista
Correlation between in situ structural and optical characterization of the semiconductor-to-metal phase transition of VO2 thin films on sapphire / Cesca, T.; Scian, C.; Petronijevic, E.; Leahu, G.; Li Voti, R.; Cesarini, G.; Macaluso, R.; Mosca, M.; Sibilia, C.; Mattei, G.. - In: NANOSCALE. - ISSN 2040-3364. - 12:2(2020), pp. 851-863. [10.1039/c9nr09024j]
File allegati a questo prodotto
File Dimensione Formato  
Cesca_Correlationbetweeninsitu_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.26 MB
Formato Adobe PDF
5.26 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1432429
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 40
social impact