Oxidative stress has been implicated in the pathogenesis of a number of diseases including Alzheimer's disease (AD). The oxidative stress hypothesis of AD pathogenesis, in part, is based on beta-amyloid peptide (Abeta)-induced oxidative stress in both in vitro and in vivo studies. Oxidative modification of the protein may induce structural changes in a protein that might lead to its functional impairment. A number of oxidatively modified brain proteins were identified using redox proteomics in AD, mild cognitive impairment (MCI) and Abeta models of AD, which support a role of Abeta in the alteration of a number of biochemical and cellular processes such as energy metabolism, protein degradation, synaptic function, neuritic growth, neurotransmission, cellular defense system, long term potentiation involved in formation of memory, etc. All the redox proteomics-identified brain proteins fit well with the appearance of the three histopathological hallmarks of AD, i.e., synapse loss, amyloid plaque formation and neurofibrillary tangle formation and suggest a direct or indirect association of the identified proteins with the pathological and/or biochemical alterations in AD. Further, Abeta models of AD strongly support the notion that oxidative stress induced by Abeta may be a driving force in AD pathogenesis. Studies conducted on arguably the earliest stage of AD, MCI, may elucidate the mechanism(s) leading to AD pathogenesis by identifying early markers of the disease, and to develop therapeutic strategies to slow or prevent the progression of AD. In this review, we summarized our findings of redox proteomics identified oxidatively modified proteins in AD, MCI and AD models

Oxidatively modified proteins in Alzheimer's disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis / Sultana, R; Perluigi, Marzia; Butterfield, Da. - In: ACTA NEUROPATHOLOGICA. - ISSN 0001-6322. - 118:(2009), pp. 131-150. [10.1007/s00401-009-0517-0]

Oxidatively modified proteins in Alzheimer's disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis

PERLUIGI, Marzia;
2009

Abstract

Oxidative stress has been implicated in the pathogenesis of a number of diseases including Alzheimer's disease (AD). The oxidative stress hypothesis of AD pathogenesis, in part, is based on beta-amyloid peptide (Abeta)-induced oxidative stress in both in vitro and in vivo studies. Oxidative modification of the protein may induce structural changes in a protein that might lead to its functional impairment. A number of oxidatively modified brain proteins were identified using redox proteomics in AD, mild cognitive impairment (MCI) and Abeta models of AD, which support a role of Abeta in the alteration of a number of biochemical and cellular processes such as energy metabolism, protein degradation, synaptic function, neuritic growth, neurotransmission, cellular defense system, long term potentiation involved in formation of memory, etc. All the redox proteomics-identified brain proteins fit well with the appearance of the three histopathological hallmarks of AD, i.e., synapse loss, amyloid plaque formation and neurofibrillary tangle formation and suggest a direct or indirect association of the identified proteins with the pathological and/or biochemical alterations in AD. Further, Abeta models of AD strongly support the notion that oxidative stress induced by Abeta may be a driving force in AD pathogenesis. Studies conducted on arguably the earliest stage of AD, MCI, may elucidate the mechanism(s) leading to AD pathogenesis by identifying early markers of the disease, and to develop therapeutic strategies to slow or prevent the progression of AD. In this review, we summarized our findings of redox proteomics identified oxidatively modified proteins in AD, MCI and AD models
2009
01 Pubblicazione su rivista::01a Articolo in rivista
Oxidatively modified proteins in Alzheimer's disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis / Sultana, R; Perluigi, Marzia; Butterfield, Da. - In: ACTA NEUROPATHOLOGICA. - ISSN 0001-6322. - 118:(2009), pp. 131-150. [10.1007/s00401-009-0517-0]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/143194
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 69
  • Scopus 186
  • ???jsp.display-item.citation.isi??? 170
social impact