This work presents a hybrid approach for unsupervised algorithms (UHA), in order to extract information and patterns from data concerning terrorist attacks. The reference data are those of the Global Terrorism Database. The work presents an approach based on autoencoders and k-modes type clustering. The results obtained are examined through some metrics presented in the article and it is also considered methodologically how to determine a robust threshold for anomaly detection problems.

Unsupervised Hybrid Algorithm to Detect Anomalies for Predicting Terrorists Attacks / Curia, Francesco. - In: INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS. - ISSN 0975-8887. - 35:176(2020), pp. 1-8. [10.5120/ijca2020920432]

Unsupervised Hybrid Algorithm to Detect Anomalies for Predicting Terrorists Attacks

Francesco Curia
Primo
2020

Abstract

This work presents a hybrid approach for unsupervised algorithms (UHA), in order to extract information and patterns from data concerning terrorist attacks. The reference data are those of the Global Terrorism Database. The work presents an approach based on autoencoders and k-modes type clustering. The results obtained are examined through some metrics presented in the article and it is also considered methodologically how to determine a robust threshold for anomaly detection problems.
2020
Unsupervised learning; Terrorism; Anomaly detection
01 Pubblicazione su rivista::01a Articolo in rivista
Unsupervised Hybrid Algorithm to Detect Anomalies for Predicting Terrorists Attacks / Curia, Francesco. - In: INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS. - ISSN 0975-8887. - 35:176(2020), pp. 1-8. [10.5120/ijca2020920432]
File allegati a questo prodotto
File Dimensione Formato  
Curia_Unsupervised_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 622.83 kB
Formato Adobe PDF
622.83 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1430824
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact