We show a canonical expression of a univariate risky asset. We find out a canonical expression of the product of two univariate risky assets when they are jointly considered. We find out a canonical expression of a portfolio of two univariate risky assets when it is viewed as a stand-alone entity. We prove that a univariate risky asset is an isometry. We define different distributions of probability on R inside of metric spaces having different dimensions. We use the geometric property of collinearity in order to obtain this thing. We obtain the expected return on a portfolio of two univariate risky assets when it is viewed as a stand-alone entity. We also obtain its variance. We show that it is possible to use two different quadratic metrics in order to analyze a portfolio of two univariate risky assets. We consider two intrinsic properties of it. If a portfolio of two univariate risky assets is viewed as a stand-alone entity then it is an antisymmetric tensor of order 2. What we say can be extended to a portfolio of more than two univariate risky assets.
A portfolio of risky assets and its intrinsic properties / Angelini, Pierpaolo. - In: JOURNAL OF MATHEMATICS RESEARCH. - ISSN 1916-9795. - (2020).
A portfolio of risky assets and its intrinsic properties
pierpaolo angelini
2020
Abstract
We show a canonical expression of a univariate risky asset. We find out a canonical expression of the product of two univariate risky assets when they are jointly considered. We find out a canonical expression of a portfolio of two univariate risky assets when it is viewed as a stand-alone entity. We prove that a univariate risky asset is an isometry. We define different distributions of probability on R inside of metric spaces having different dimensions. We use the geometric property of collinearity in order to obtain this thing. We obtain the expected return on a portfolio of two univariate risky assets when it is viewed as a stand-alone entity. We also obtain its variance. We show that it is possible to use two different quadratic metrics in order to analyze a portfolio of two univariate risky assets. We consider two intrinsic properties of it. If a portfolio of two univariate risky assets is viewed as a stand-alone entity then it is an antisymmetric tensor of order 2. What we say can be extended to a portfolio of more than two univariate risky assets.File | Dimensione | Formato | |
---|---|---|---|
Angelini_portfolio_2020.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
167.94 kB
Formato
Adobe PDF
|
167.94 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.