Erdos, Horvath and Joo discovered some years ago that for some real numbers 1 < q < 2 there exists only one sequence c(i) of zeroes and ones such that Sigma c(i) q(-i) = 1. Subsequently, the set U of these numbers was characterized algebraically in [P. Erdos, I. Joo, V. Komornik, Characterization of the unique expansions 1 = Sigma q(-ni) and related problems, Bull. Soc. Math. France 118 (1990) 377-390] and [V. Komornik, P. Loreti, Subexpansions, superexpansions and uniqueness properties in non-integer bases, Period. Math. Hungar. 44 (2) (2002) 195-216]. We establish an analogous characterization of the closure (U) over bar of U. This allows us to clarify the topological structure of these sets: (U) over bar U is a countable dense set of (U) over bar, so the latter set is perfect. Moreover, since U is known to have zero Lebesgue measure, (U) over bar is a Cantor set. (C) 2006 Elsevier Inc. All rights reserved.
On the topological structure of univoque sets / Vilmos, Komornik; Loreti, Paola. - In: JOURNAL OF NUMBER THEORY. - ISSN 0022-314X. - STAMPA. - 122:1(2007), pp. 157-183. [10.1016/j.jnt.2006.04.006]
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | On the topological structure of univoque sets | |
Autori: | ||
Data di pubblicazione: | 2007 | |
Rivista: | ||
Citazione: | On the topological structure of univoque sets / Vilmos, Komornik; Loreti, Paola. - In: JOURNAL OF NUMBER THEORY. - ISSN 0022-314X. - STAMPA. - 122:1(2007), pp. 157-183. [10.1016/j.jnt.2006.04.006] | |
Handle: | http://hdl.handle.net/11573/14218 | |
Appartiene alla tipologia: | 01a Articolo in rivista |