The artificial material single-layer (AMSL) method, recently proposed to model solid conductive shields in finite-element solvers without using a fine discretization, is here extended to model multilayer shields. First, the admittance matrix of a multilayer shield is analytically derived by the transmission line (TL) theory. Then, considering that the field through conductive shields propagates normally to the shield surface, the TL admittance matrix is equated to that of a 1-D finite element to extract the physical constants of a homogenized artificial material. These constants are adopted to model the multilayer shield region in the finite-element method (FEM) calculations by using only one layer of finite elements in the direction of the field propagation. By the AMSL-FEM, the field propagation through the multilayer shield is accurately modeled taking into account the skin effect and avoiding the fine discretization of the shield.
Finite-element modeling of conductive multilayer shields by artificial material single-layer method / Cruciani, S.; Campi, T.; Maradei, F.; Feliziani, M.. - In: IEEE TRANSACTIONS ON MAGNETICS. - ISSN 0018-9464. - 56:1(2020), pp. 1-4. [10.1109/TMAG.2019.2949737]
Finite-element modeling of conductive multilayer shields by artificial material single-layer method
Cruciani S.;Campi T.;Maradei F.;
2020
Abstract
The artificial material single-layer (AMSL) method, recently proposed to model solid conductive shields in finite-element solvers without using a fine discretization, is here extended to model multilayer shields. First, the admittance matrix of a multilayer shield is analytically derived by the transmission line (TL) theory. Then, considering that the field through conductive shields propagates normally to the shield surface, the TL admittance matrix is equated to that of a 1-D finite element to extract the physical constants of a homogenized artificial material. These constants are adopted to model the multilayer shield region in the finite-element method (FEM) calculations by using only one layer of finite elements in the direction of the field propagation. By the AMSL-FEM, the field propagation through the multilayer shield is accurately modeled taking into account the skin effect and avoiding the fine discretization of the shield.File | Dimensione | Formato | |
---|---|---|---|
Cruciani_Finite-element_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.45 MB
Formato
Adobe PDF
|
1.45 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.