The nonnegative inverse eigenvalue problem is the problem of determining necessary and sufficient conditions for a multiset of complex numbers to be the spectrum of a nonnegative real matrix of size equal to the cardinality of the multiset itself. The problem is longstanding and proved to be very difficult so that several variations have been defined by considering particular classes of multisets and nonnegative real matrices. In this paper, a novel variation of the problem is proposed. This variation is motivated by a practical application in the positive realization problem, that is the problem of characterizing existence and minimality of a positive state–space representation of a given transfer function.
The NIEP and the positive realization problem / Benvenuti, Luca. - In: THE ELECTRONIC JOURNAL OF LINEAR ALGEBRA. - ISSN 1081-3810. - 36:36(2020), pp. 367-384. [10.13001/ela.2020.5039]
Titolo: | The NIEP and the positive realization problem | |
Autori: | BENVENUTI, Luca (Corresponding author) | |
Data di pubblicazione: | 2020 | |
Rivista: | ||
Citazione: | The NIEP and the positive realization problem / Benvenuti, Luca. - In: THE ELECTRONIC JOURNAL OF LINEAR ALGEBRA. - ISSN 1081-3810. - 36:36(2020), pp. 367-384. [10.13001/ela.2020.5039] | |
Handle: | http://hdl.handle.net/11573/1415887 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Benvenuti_The-NIEP_2020.pdf | https://doi.org/10.13001/ela.2020.5039 | Versione editoriale (versione pubblicata con il layout dell'editore) | Tutti i diritti riservati (All rights reserved) | Open Access Visualizza/Apri |