Water is a complex liquid that displays a surprising array of unusual properties, the most famous being the density maximum at about 4 °C. The origin of these anomalies is still a matter of debate, and so far a quantitative description of water’s phase behaviour starting from the molecular arrangements is still missing. Here we report a study of the microscopic structural features of water as obtained from computer simulations. We identify locally favoured structures having a high degree of translational order in the second shell, and a two-state model is used to describe the behaviour of liquid water over a wide region of the phase diagram. Furthermore, we show that locally favoured structures not only have translational order in the second shell but also contain five-membered rings of hydrogen-bonded molecules. This suggests their mixed character: the former helps crystallization, whereas the latter causes frustration against crystallization.

Understanding water{'}s anomalies with locally favoured structures / Russo, John; Tanaka, H.. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 5:(2014).

Understanding water{'}s anomalies with locally favoured structures

Russo John;
2014

Abstract

Water is a complex liquid that displays a surprising array of unusual properties, the most famous being the density maximum at about 4 °C. The origin of these anomalies is still a matter of debate, and so far a quantitative description of water’s phase behaviour starting from the molecular arrangements is still missing. Here we report a study of the microscopic structural features of water as obtained from computer simulations. We identify locally favoured structures having a high degree of translational order in the second shell, and a two-state model is used to describe the behaviour of liquid water over a wide region of the phase diagram. Furthermore, we show that locally favoured structures not only have translational order in the second shell but also contain five-membered rings of hydrogen-bonded molecules. This suggests their mixed character: the former helps crystallization, whereas the latter causes frustration against crystallization.
2014
water, nucleation, computer simulations
01 Pubblicazione su rivista::01a Articolo in rivista
Understanding water{'}s anomalies with locally favoured structures / Russo, John; Tanaka, H.. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 5:(2014).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1415713
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 236
social impact