Nanoparticles represent a promising platform for diagnostics and therapy of human diseases. For biomedical applications, these nanoparticles are usually coated with photosensitizers regularly activated in a spectral window of 530–700 nm. The emissions at 530 nm (green) and 660 nm (red) are of particular interest for imaging and photodynamic therapy, respectively. This work presents the Mg2SiO4:Er3+ system, produced by reverse strike co-precipitation, with up to 10% dopant and no secondary phase formation. These nanoparticles when excited at 985 nm show upconversion emission with peaks around 530 and 660 nm, although excitation at 808 nm leads to only a single emission peak at around 530 nm. The direct upconversion of this biomaterial without a co-dopant, and its tunability by the excitation source, renders Mg2SiO4:Er3+ nanoparticles a promising system for biomedical applications.
Tunable green/red luminescence by infrared upconversion in biocompatible forsterite nanoparticles with high erbium doping uptake / Zampiva, R. Y. S.; Acauan, L. H.; Venturini, J.; Garcia, J. A. M.; da Silva, D. S.; Han, Z.; Kassab, L. R. P.; Wetter, N. U.; Agarwal, A.; Alves, A. K.; Bergmann, C. P.. - In: OPTICAL MATERIALS. - ISSN 0925-3467. - 76:(2018), pp. 407-415. [10.1016/j.optmat.2018.01.004]
Tunable green/red luminescence by infrared upconversion in biocompatible forsterite nanoparticles with high erbium doping uptake
Zampiva R. Y. S.;
2018
Abstract
Nanoparticles represent a promising platform for diagnostics and therapy of human diseases. For biomedical applications, these nanoparticles are usually coated with photosensitizers regularly activated in a spectral window of 530–700 nm. The emissions at 530 nm (green) and 660 nm (red) are of particular interest for imaging and photodynamic therapy, respectively. This work presents the Mg2SiO4:Er3+ system, produced by reverse strike co-precipitation, with up to 10% dopant and no secondary phase formation. These nanoparticles when excited at 985 nm show upconversion emission with peaks around 530 and 660 nm, although excitation at 808 nm leads to only a single emission peak at around 530 nm. The direct upconversion of this biomaterial without a co-dopant, and its tunability by the excitation source, renders Mg2SiO4:Er3+ nanoparticles a promising system for biomedical applications.File | Dimensione | Formato | |
---|---|---|---|
Zampiva_Tunable_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.13 MB
Formato
Adobe PDF
|
3.13 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.