We study existence and regularity of weak solutions for the following p-Laplacian system −Δpu+Aφθ+1|u|r−2u=f,u∈W01,p(Ω),−Δpφ=|u|rφθ,φ∈W01,p(Ω),where Ω is an open bounded subset of RN(N≥2), Δpv≔div(|∇v|p−2∇v) is the p-Laplacian operator, for 10, r>1, 0≤θ

Regularizing effect for some p-Laplacian systems / Durastanti, R.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 188:(2019), pp. 425-438. [10.1016/j.na.2019.06.011]

Regularizing effect for some p-Laplacian systems

Durastanti R.
2019

Abstract

We study existence and regularity of weak solutions for the following p-Laplacian system −Δpu+Aφθ+1|u|r−2u=f,u∈W01,p(Ω),−Δpφ=|u|rφθ,φ∈W01,p(Ω),where Ω is an open bounded subset of RN(N≥2), Δpv≔div(|∇v|p−2∇v) is the p-Laplacian operator, for 10, r>1, 0≤θ
Nonlinear elliptic systems; Schrödinger–Maxwell equations; Variational methods
01 Pubblicazione su rivista::01a Articolo in rivista
Regularizing effect for some p-Laplacian systems / Durastanti, R.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 188:(2019), pp. 425-438. [10.1016/j.na.2019.06.011]
File allegati a questo prodotto
File Dimensione Formato  
Durastanti_Regularizingeffect_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 706.97 kB
Formato Adobe PDF
706.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1415216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact