We apply to the random-field Ising model at zero temperature (T = 0) the perturbative loop expansion around the Bethe solution. A comparison with the standard ε expansion is made, highlighting the key differences that make the expansion around the Bethe solution much more appropriate to correctly describe strongly disordered systems, especially those controlled by a T = 0 renormalization group (RG) fixed point. The latter loop expansion produces an effective theory with cubic vertices. We compute the one-loop corrections due to cubic vertices, finding additional terms that are absent in the ε expansion. However, these additional terms are subdominant with respect to the standard, supersymmetric ones; therefore, dimensional reduction is still valid at this order of the loop expansion.

Loop expansion around the Bethe solution for the random magnetic field Ising ferromagnets at zero temperature / Angelini, M. C.; Lucibello, C.; Parisi, G.; Ricci-Tersenghi, F.; Rizzo, T.. - In: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. - ISSN 0027-8424. - 117:5(2020), pp. 2268-2274. [10.1073/pnas.1909872117]

Loop expansion around the Bethe solution for the random magnetic field Ising ferromagnets at zero temperature

Angelini M. C.
;
Lucibello C.;Parisi G.;Ricci-Tersenghi F.;Rizzo T.
2020

Abstract

We apply to the random-field Ising model at zero temperature (T = 0) the perturbative loop expansion around the Bethe solution. A comparison with the standard ε expansion is made, highlighting the key differences that make the expansion around the Bethe solution much more appropriate to correctly describe strongly disordered systems, especially those controlled by a T = 0 renormalization group (RG) fixed point. The latter loop expansion produces an effective theory with cubic vertices. We compute the one-loop corrections due to cubic vertices, finding additional terms that are absent in the ε expansion. However, these additional terms are subdominant with respect to the standard, supersymmetric ones; therefore, dimensional reduction is still valid at this order of the loop expansion.
2020
Bethe lattices; Critical exponents; Disordered systems; Ising model; Perturbative expansion
01 Pubblicazione su rivista::01a Articolo in rivista
Loop expansion around the Bethe solution for the random magnetic field Ising ferromagnets at zero temperature / Angelini, M. C.; Lucibello, C.; Parisi, G.; Ricci-Tersenghi, F.; Rizzo, T.. - In: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. - ISSN 0027-8424. - 117:5(2020), pp. 2268-2274. [10.1073/pnas.1909872117]
File allegati a questo prodotto
File Dimensione Formato  
Angelini_Loop expansion_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1415166
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact