Human carbonic anhydrase (CA; EC 4.2.1.1) isoforms II and VII are implicated in neuronal excitation, seizures, and neuropathic pain (NP). Their selective inhibition over off-target CAs is expected to produce an anti-NP action devoid of side effects due to promiscuous CA modulation. Here, a drug design strategy based on the observation of (dis)similarities between the target CA active sites was planned with benzenesulfonamide derivatives and, for the first time, a phosphorus-based linker. Potent and selective CA II/VII inhibitors were identified among the synthesized phenyl(thio)phosphon(amid)ates 3-22. X-ray crystallography depicted the binding mode of phosphonic acid 3 to both CAs II and VII. The most promising derivatives, after evaluation of their stability in acidic media, were tested in a mouse model of oxaliplatin-induced neuropathy. The most potent compound racemic mixture was subjected to HPLC enantioseparation, and the identification of the eutomer, the (S)-enantiomer, allowed to halve the dose totally relieving allodynia in mice.

Phenyl(thio)phosphon(amid)ate benzenesulfonamides as potent and selective inhibitors of human carbonic anhydrases II and VII counteract allodynia in a mouse model of oxaliplatin-induced neuropathy / Nocentini, A.; Alterio, V.; Bua, S.; Micheli, L.; Esposito, D.; Buonanno, M.; Bartolucci, G.; Osman, S. M.; Alothman, Z. A.; Cirilli, R.; Pierini, M.; Monti, S. M.; Di Cesare Mannelli, L.; Gratteri, P.; Ghelardini, C.; De Simone, G.; Supuran, C. T.. - In: JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 1520-4804. - 63:10(2020), pp. 5185-5200. [10.1021/acs.jmedchem.9b02135]

Phenyl(thio)phosphon(amid)ate benzenesulfonamides as potent and selective inhibitors of human carbonic anhydrases II and VII counteract allodynia in a mouse model of oxaliplatin-induced neuropathy

Pierini M.;
2020

Abstract

Human carbonic anhydrase (CA; EC 4.2.1.1) isoforms II and VII are implicated in neuronal excitation, seizures, and neuropathic pain (NP). Their selective inhibition over off-target CAs is expected to produce an anti-NP action devoid of side effects due to promiscuous CA modulation. Here, a drug design strategy based on the observation of (dis)similarities between the target CA active sites was planned with benzenesulfonamide derivatives and, for the first time, a phosphorus-based linker. Potent and selective CA II/VII inhibitors were identified among the synthesized phenyl(thio)phosphon(amid)ates 3-22. X-ray crystallography depicted the binding mode of phosphonic acid 3 to both CAs II and VII. The most promising derivatives, after evaluation of their stability in acidic media, were tested in a mouse model of oxaliplatin-induced neuropathy. The most potent compound racemic mixture was subjected to HPLC enantioseparation, and the identification of the eutomer, the (S)-enantiomer, allowed to halve the dose totally relieving allodynia in mice.
2020
neuropathic pain; metalloenzyme; drug-design
01 Pubblicazione su rivista::01a Articolo in rivista
Phenyl(thio)phosphon(amid)ate benzenesulfonamides as potent and selective inhibitors of human carbonic anhydrases II and VII counteract allodynia in a mouse model of oxaliplatin-induced neuropathy / Nocentini, A.; Alterio, V.; Bua, S.; Micheli, L.; Esposito, D.; Buonanno, M.; Bartolucci, G.; Osman, S. M.; Alothman, Z. A.; Cirilli, R.; Pierini, M.; Monti, S. M.; Di Cesare Mannelli, L.; Gratteri, P.; Ghelardini, C.; De Simone, G.; Supuran, C. T.. - In: JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 1520-4804. - 63:10(2020), pp. 5185-5200. [10.1021/acs.jmedchem.9b02135]
File allegati a questo prodotto
File Dimensione Formato  
Nocentini_Phenyl_2020.pdf

Open Access dal 15/05/2021

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1414963
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 28
social impact