The development of new nanomaterials is gaining increasing attention due to their extensive applications in fields ranging from medicine to food and cultural heritage. Green nanoparticles provide advantages compared to conventional nanoparticles as their synthesis is environmentally-friendly and does not require the use of high temperatures, pressure, or toxic chemicals. In this paper, green silver nanoparticles (AgNPs) have been synthesized according to a new method using quercetin as a reducing agent at room temperature. The synthesized AgNPs were characterized using UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and dynamic light scattering (DLS) techniques and successively tested for biocide activity by studying their effects in the inhibition of bacterial growth. The results demonstrated that the smaller the AgNPs size, the greater their biocide activity. In particular, AgNPs with a diameter of 8 nm showed a minimum inhibitory concentration (MIC) value of 1.0 μg/mL against Streptococcus sp., Escherichia coli and Candida sp. microorganisms, while AgNPs with a larger diameter of about 20 nm were able to inhibit microbial of all selected pathogens at a higher MIC value of 2.5 μg/mL.

Biocide activity of green quercetin-mediated synthesized silver nanoparticles / Tasca, Federico; Antiochia, Riccarda. - In: NANOMATERIALS. - ISSN 2079-4991. - 10:5(2020).

Biocide activity of green quercetin-mediated synthesized silver nanoparticles

Federico Tasca
Primo
;
Riccarda Antiochia
Ultimo
2020

Abstract

The development of new nanomaterials is gaining increasing attention due to their extensive applications in fields ranging from medicine to food and cultural heritage. Green nanoparticles provide advantages compared to conventional nanoparticles as their synthesis is environmentally-friendly and does not require the use of high temperatures, pressure, or toxic chemicals. In this paper, green silver nanoparticles (AgNPs) have been synthesized according to a new method using quercetin as a reducing agent at room temperature. The synthesized AgNPs were characterized using UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and dynamic light scattering (DLS) techniques and successively tested for biocide activity by studying their effects in the inhibition of bacterial growth. The results demonstrated that the smaller the AgNPs size, the greater their biocide activity. In particular, AgNPs with a diameter of 8 nm showed a minimum inhibitory concentration (MIC) value of 1.0 μg/mL against Streptococcus sp., Escherichia coli and Candida sp. microorganisms, while AgNPs with a larger diameter of about 20 nm were able to inhibit microbial of all selected pathogens at a higher MIC value of 2.5 μg/mL.
2020
green synthesis; silver nanoparticles; quercetin; biocide activity
01 Pubblicazione su rivista::01a Articolo in rivista
Biocide activity of green quercetin-mediated synthesized silver nanoparticles / Tasca, Federico; Antiochia, Riccarda. - In: NANOMATERIALS. - ISSN 2079-4991. - 10:5(2020).
File allegati a questo prodotto
File Dimensione Formato  
Tasca_Biocide_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1414514
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 27
social impact