Nuclear medicine offers several techniques and procedures to image infection, but radiolabelled autologous white blood cells (WBCs) are still the gold standard. These cells are usually labelled with 111In or 99mTc bound to a hydrophobic chelating agent that allows these isotopes to pass through the plasma membrane and enter in the cytoplasm. The most common compound in Europe is HMPAO that efficiently chelates 99mTc. However, up to 20-40% of the complex is released from the cells in the first few hours. The aim of this study was to radiolabel a new compound, (S3CPh)2 (S2CPh)-complex (SSS-complex) with 99mTc and compare its binding kinetics and specificity for WBC with HMPAO. The SSS-complex was labelled with 99mTc and analysed by iTLC and RP-HPLC. In vitro quality controls included a stability assay in serum and saline. Results showed a labelling efficiency of 95 ± 1.2% and 98 ± 1.4% for 99mTc-SSS-complex and 99mTc-HMPAO, respectively (p=ns). 99mTc-SSS-complex was stable in serum and in saline up to 24 h (94 ± 0.1%). Cell labelling experiments showed a higher incorporation of 99mTc-SSS-complex than 99mTc-HMPAO by granulocytes (62.6 ± 17.8% vs 40.5 ± 15%, p=0.05), lymphocytes (59.9 ± 22.2% vs 29.4 ± 13.5%; p=0.03), and platelets (44.4 ± 24% vs 20.5 ± 10.7%; p=ns), but the release of radiopharmaceutical from granulocytes at 1 h was lower for HMPAO than for SSS-complex (10.3 ± 1.9% vs 21.3 ± 1.8%; p=0.001). In conclusion, 99mTc-SSS-complex, although showing high labelling efficiency, radiochemical purity, and stability, is not a valid alternative to 99mTc-HMPAO, for example, in vivo white blood cells labelling because of high lymphocyte and platelet uptake and rapid washout from granulocytes.

Study of Binding Kinetics and Specificity of 99mTc-SSS-Complex and 99mTc-HMPAO to Blood Cells / Auletta, S.; Iodice, V.; Galli, F.; Lepareur, N.; Devillers, A.; Signore, A.. - In: CONTRAST MEDIA & MOLECULAR IMAGING. - ISSN 1555-4309. - 2018:Oct 25(2018), pp. 1-6. [10.1155/2018/5603902]

Study of Binding Kinetics and Specificity of 99mTc-SSS-Complex and 99mTc-HMPAO to Blood Cells

Auletta S.;Galli F.;Signore A.
2018

Abstract

Nuclear medicine offers several techniques and procedures to image infection, but radiolabelled autologous white blood cells (WBCs) are still the gold standard. These cells are usually labelled with 111In or 99mTc bound to a hydrophobic chelating agent that allows these isotopes to pass through the plasma membrane and enter in the cytoplasm. The most common compound in Europe is HMPAO that efficiently chelates 99mTc. However, up to 20-40% of the complex is released from the cells in the first few hours. The aim of this study was to radiolabel a new compound, (S3CPh)2 (S2CPh)-complex (SSS-complex) with 99mTc and compare its binding kinetics and specificity for WBC with HMPAO. The SSS-complex was labelled with 99mTc and analysed by iTLC and RP-HPLC. In vitro quality controls included a stability assay in serum and saline. Results showed a labelling efficiency of 95 ± 1.2% and 98 ± 1.4% for 99mTc-SSS-complex and 99mTc-HMPAO, respectively (p=ns). 99mTc-SSS-complex was stable in serum and in saline up to 24 h (94 ± 0.1%). Cell labelling experiments showed a higher incorporation of 99mTc-SSS-complex than 99mTc-HMPAO by granulocytes (62.6 ± 17.8% vs 40.5 ± 15%, p=0.05), lymphocytes (59.9 ± 22.2% vs 29.4 ± 13.5%; p=0.03), and platelets (44.4 ± 24% vs 20.5 ± 10.7%; p=ns), but the release of radiopharmaceutical from granulocytes at 1 h was lower for HMPAO than for SSS-complex (10.3 ± 1.9% vs 21.3 ± 1.8%; p=0.001). In conclusion, 99mTc-SSS-complex, although showing high labelling efficiency, radiochemical purity, and stability, is not a valid alternative to 99mTc-HMPAO, for example, in vivo white blood cells labelling because of high lymphocyte and platelet uptake and rapid washout from granulocytes.
2018
blood cells; humans; kinetics; radiopharmaceuticals; sensitivity and specificity; sulfides; technetium; technetium tc 99m exametazime
01 Pubblicazione su rivista::01a Articolo in rivista
Study of Binding Kinetics and Specificity of 99mTc-SSS-Complex and 99mTc-HMPAO to Blood Cells / Auletta, S.; Iodice, V.; Galli, F.; Lepareur, N.; Devillers, A.; Signore, A.. - In: CONTRAST MEDIA & MOLECULAR IMAGING. - ISSN 1555-4309. - 2018:Oct 25(2018), pp. 1-6. [10.1155/2018/5603902]
File allegati a questo prodotto
File Dimensione Formato  
Auletta_Study-of-Binding_2018.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1413507
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact