In this study we have applied an integrated system biology approach to characterize the metabolic landscape of Streptomyces ambofaciens and to identify a list of potential metabolic engineering targets for the overproduction of the secondary metabolites in this microorganism. We focused on an often overlooked growth period (i.e., post-first rapid growth phase) and, by integrating constraint-based metabolic modeling with time resolved RNA-seq data, we depicted the main effects of changes in gene expression on the overall metabolic reprogramming occurring in S. ambofaciens. Moreover, through metabolic modeling, we unraveled a set of candidate overexpression gene targets hypothetically leading to spiramycin overproduction. Model predictions were experimentally validated by genetic manipulation of the recently described ethylmalonyl-CoA metabolic node, providing evidence that spiramycin productivity may be increased by enhancing the carbon flow through this pathway. The goal was achieved by over-expressing the ccr paralog srm4 in an ad hoc engineered plasmid. This work embeds the first metabolic reconstruction of S. ambofaciens and the successful experimental validation of model predictions and demonstrates the validity and the importance of in silico modeling tools for the overproduction of molecules with a biotechnological interest. Finally, the proposed metabolic reconstruction, which includes manually refined pathways for several secondary metabolites with antimicrobial activity, represents a solid platform for the future exploitation of S. ambofaciens biotechnological potential.

Time-resolved transcriptomics and constraint-based modeling identify system-level metabolic features and overexpression targets to increase spiramycin production in Streptomyces ambofaciens / Fondi, M.; Pinatel, E.; Tala, A.; Damiano, F.; Consolandi, C.; Mattorre, B.; Fico, D.; Testini, M.; De Benedetto, G. E.; Siculella, L.; De Bellis, G.; Alifano, P.; Peano, C.. - In: FRONTIERS IN MICROBIOLOGY. - ISSN 1664-302X. - 8:MAY(2017), p. 835. [10.3389/fmicb.2017.00835]

Time-resolved transcriptomics and constraint-based modeling identify system-level metabolic features and overexpression targets to increase spiramycin production in Streptomyces ambofaciens

Fondi M.;Consolandi C.;Mattorre B.;Fico D.;Testini M.;De Bellis G.;
2017

Abstract

In this study we have applied an integrated system biology approach to characterize the metabolic landscape of Streptomyces ambofaciens and to identify a list of potential metabolic engineering targets for the overproduction of the secondary metabolites in this microorganism. We focused on an often overlooked growth period (i.e., post-first rapid growth phase) and, by integrating constraint-based metabolic modeling with time resolved RNA-seq data, we depicted the main effects of changes in gene expression on the overall metabolic reprogramming occurring in S. ambofaciens. Moreover, through metabolic modeling, we unraveled a set of candidate overexpression gene targets hypothetically leading to spiramycin overproduction. Model predictions were experimentally validated by genetic manipulation of the recently described ethylmalonyl-CoA metabolic node, providing evidence that spiramycin productivity may be increased by enhancing the carbon flow through this pathway. The goal was achieved by over-expressing the ccr paralog srm4 in an ad hoc engineered plasmid. This work embeds the first metabolic reconstruction of S. ambofaciens and the successful experimental validation of model predictions and demonstrates the validity and the importance of in silico modeling tools for the overproduction of molecules with a biotechnological interest. Finally, the proposed metabolic reconstruction, which includes manually refined pathways for several secondary metabolites with antimicrobial activity, represents a solid platform for the future exploitation of S. ambofaciens biotechnological potential.
2017
Antibiotic production; Metabolic modeling; Strain improvement; Streptomyces ambofaciens; Systems biology; Transcriptomics
01 Pubblicazione su rivista::01a Articolo in rivista
Time-resolved transcriptomics and constraint-based modeling identify system-level metabolic features and overexpression targets to increase spiramycin production in Streptomyces ambofaciens / Fondi, M.; Pinatel, E.; Tala, A.; Damiano, F.; Consolandi, C.; Mattorre, B.; Fico, D.; Testini, M.; De Benedetto, G. E.; Siculella, L.; De Bellis, G.; Alifano, P.; Peano, C.. - In: FRONTIERS IN MICROBIOLOGY. - ISSN 1664-302X. - 8:MAY(2017), p. 835. [10.3389/fmicb.2017.00835]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1412043
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact