We define a family of generalizations of SL_2 -tilings to higher dimensions called e-SL2 -tilings. We show that, in each dimension 3 or greater, e-SL_2 -tilings exist only for certain choices of e. In the case that they exist, we show that they are essentially unique and have a concrete description in terms of odd Fibonacci numbers.
SL2 -tilings do not exist in higher dimensions (mostly) / Demonet, Laurent; Plamondon, PIERRE-GUY; Rupel, Dylan; Stella, Salvatore; PAVEL TUMARKIN, And. - In: SÉMINAIRE LOTHARINGIEN DE COMBINATOIRE. - ISSN 1286-4889. - 76:(2018).
SL2 -tilings do not exist in higher dimensions (mostly)
LAURENT DEMONET;PIERRE-GUY PLAMONDON;SALVATORE STELLA;
2018
Abstract
We define a family of generalizations of SL_2 -tilings to higher dimensions called e-SL2 -tilings. We show that, in each dimension 3 or greater, e-SL_2 -tilings exist only for certain choices of e. In the case that they exist, we show that they are essentially unique and have a concrete description in terms of odd Fibonacci numbers.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Demonet_SL2-Tilings_2018.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
118.29 kB
Formato
Adobe PDF
|
118.29 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.