In the last decades, we have witnessed advances in both hardware and associated algorithms resulting in unprecedented access to volumes of 2D and, more recently, 3D data capturing human movement. We are no longer satisfied with recovering human pose as an image-space 2D skeleton, but seek to obtain a full 3D human body representation. The main challenges in acquiring 3D human shape from such raw measurements are identifying which parts of the data relate to body measurements and recovering from partial observations, often arising out of severe occlusion. For example, a person occluded by a piece of furniture, or being self-occluded in a profile view. In this paper, we propose POP, a novel and efficient paradigm for estimation and completion of human shape to produce a full parametric 3D model directly from single RGBD images, even under severe occlusion. At the heart of our method is a novel human body pose retrieval formulation that explicitly models and handles occlusion. The retrieved result is then refined by a robust optimization to yield a full representation of the human shape. We demonstrate our method on a range of challenging real world scenarios and produce high-quality results not possible by competing alternatives. The method opens up exciting AR/VR application possibilities by working on 'in-the-wild' measurements of human motion.

POP: Full Parametric model Estimation for Occluded People / Marin, Riccardo; Melzi, Simone; Mitra, Niloy J.; Castellani, Umberto. - (2019), pp. 1-8. (Intervento presentato al convegno 3DOR2019 tenutosi a Genova) [10.2312/3dor.20191055].

POP: Full Parametric model Estimation for Occluded People

Riccardo Marin;Simone Melzi;
2019

Abstract

In the last decades, we have witnessed advances in both hardware and associated algorithms resulting in unprecedented access to volumes of 2D and, more recently, 3D data capturing human movement. We are no longer satisfied with recovering human pose as an image-space 2D skeleton, but seek to obtain a full 3D human body representation. The main challenges in acquiring 3D human shape from such raw measurements are identifying which parts of the data relate to body measurements and recovering from partial observations, often arising out of severe occlusion. For example, a person occluded by a piece of furniture, or being self-occluded in a profile view. In this paper, we propose POP, a novel and efficient paradigm for estimation and completion of human shape to produce a full parametric 3D model directly from single RGBD images, even under severe occlusion. At the heart of our method is a novel human body pose retrieval formulation that explicitly models and handles occlusion. The retrieved result is then refined by a robust optimization to yield a full representation of the human shape. We demonstrate our method on a range of challenging real world scenarios and produce high-quality results not possible by competing alternatives. The method opens up exciting AR/VR application possibilities by working on 'in-the-wild' measurements of human motion.
2019
3DOR2019
Model fitting; RGBD; Human modelling
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
POP: Full Parametric model Estimation for Occluded People / Marin, Riccardo; Melzi, Simone; Mitra, Niloy J.; Castellani, Umberto. - (2019), pp. 1-8. (Intervento presentato al convegno 3DOR2019 tenutosi a Genova) [10.2312/3dor.20191055].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1410154
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact