Given a classical semisimple complex algebraic group G and a symmetric pair (G,K) of Hermitian type, we study the closures of the spherical nilpotent K-orbits in the isotropy representation of K. We show that all such orbit closures are normal and describe the K-module structure of their ring of regular functions.

Regular functions on spherical nilpotent orbits in complex symmetric pairs: Classical Hermitian cases / Bravi, Paolo; Gandini, Jacopo. - In: KYOTO JOURNAL OF MATHEMATICS. - ISSN 2156-2261. - 60:2(2020), pp. 405-450. [10.1215/21562261-2019-0039]

Regular functions on spherical nilpotent orbits in complex symmetric pairs: Classical Hermitian cases

Bravi, Paolo;Gandini, Jacopo
2020

Abstract

Given a classical semisimple complex algebraic group G and a symmetric pair (G,K) of Hermitian type, we study the closures of the spherical nilpotent K-orbits in the isotropy representation of K. We show that all such orbit closures are normal and describe the K-module structure of their ring of regular functions.
2020
nilpotent orbits; symmetric spaces; spherical varieties
01 Pubblicazione su rivista::01a Articolo in rivista
Regular functions on spherical nilpotent orbits in complex symmetric pairs: Classical Hermitian cases / Bravi, Paolo; Gandini, Jacopo. - In: KYOTO JOURNAL OF MATHEMATICS. - ISSN 2156-2261. - 60:2(2020), pp. 405-450. [10.1215/21562261-2019-0039]
File allegati a questo prodotto
File Dimensione Formato  
Bravi_postprint_Regular-functions_2020.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 614.27 kB
Formato Adobe PDF
614.27 kB Adobe PDF
Bravi_Regular-functions_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 515.79 kB
Formato Adobe PDF
515.79 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1409030
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact