Secretome-based therapies have the potential to become the next generation of viable therapeutic wound repair treatments. However, precise strategies aimed to refine and control the secretome composition are necessary to enhance its therapeutic efficacy and facilitate clinical translation. In this study, we aim to accomplish this by transfecting human adipose-derived stem cells (hASCs) with microRNA-146a, which is a potent regulator of angiogenesis and inflammation. The secretome composition obtained from the transfected hASCs (secretome(146a)) was characterized and compared to nontransfected hASCs secretome to evaluate changes in angiogenic and anti-inflammatory growth factor, cytokine, and miRNA content. In vitro proliferation, migration, and tubular morphogenesis assays using human umbilical vein endothelial cells (HUVECs) were completed to monitor the proangiogenic efficacy of the secretome(146a). Finally, the anti-inflammatory efficacy of the secretome(146a) was assessed using HUVECs that were activated to an inflammatory state by IL-1 beta. The resulting HUVEC gene expression and protein activity of key inflammatory mediators were evaluated before and after secretome treatment. Overall, the secretome(146a) contained a greater array and concentration of therapeutic paracrine molecules, which translated into a superior angiogenic and anti-inflammatory efficacy. Therefore, this represents a promising strategy to produce therapeutic secretome for the promotion of wound repair processes.

Development of MicroRNA-146a-Enriched Stem Cell Secretome for Wound-Healing Applications / Waters, Renae; Subham, Siddharth; Pacelli, Settimio; Modaresi, Saman; Chakravarti, Aparna R; Paul, Arghya. - In: MOLECULAR PHARMACEUTICS. - ISSN 1543-8384. - 16:10(2019), pp. 4302-4312. [10.1021/acs.molpharmaceut.9b00639]

Development of MicroRNA-146a-Enriched Stem Cell Secretome for Wound-Healing Applications

Pacelli, Settimio;
2019

Abstract

Secretome-based therapies have the potential to become the next generation of viable therapeutic wound repair treatments. However, precise strategies aimed to refine and control the secretome composition are necessary to enhance its therapeutic efficacy and facilitate clinical translation. In this study, we aim to accomplish this by transfecting human adipose-derived stem cells (hASCs) with microRNA-146a, which is a potent regulator of angiogenesis and inflammation. The secretome composition obtained from the transfected hASCs (secretome(146a)) was characterized and compared to nontransfected hASCs secretome to evaluate changes in angiogenic and anti-inflammatory growth factor, cytokine, and miRNA content. In vitro proliferation, migration, and tubular morphogenesis assays using human umbilical vein endothelial cells (HUVECs) were completed to monitor the proangiogenic efficacy of the secretome(146a). Finally, the anti-inflammatory efficacy of the secretome(146a) was assessed using HUVECs that were activated to an inflammatory state by IL-1 beta. The resulting HUVEC gene expression and protein activity of key inflammatory mediators were evaluated before and after secretome treatment. Overall, the secretome(146a) contained a greater array and concentration of therapeutic paracrine molecules, which translated into a superior angiogenic and anti-inflammatory efficacy. Therefore, this represents a promising strategy to produce therapeutic secretome for the promotion of wound repair processes.
2019
angiogenesis; anti-inflammatory agents; extracellular vesicles; microRNA; secretome
01 Pubblicazione su rivista::01a Articolo in rivista
Development of MicroRNA-146a-Enriched Stem Cell Secretome for Wound-Healing Applications / Waters, Renae; Subham, Siddharth; Pacelli, Settimio; Modaresi, Saman; Chakravarti, Aparna R; Paul, Arghya. - In: MOLECULAR PHARMACEUTICS. - ISSN 1543-8384. - 16:10(2019), pp. 4302-4312. [10.1021/acs.molpharmaceut.9b00639]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1408960
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact